
SAM User’s Guide

Nuclear Science & Engineering Division

ANL/NSE-19/18 Rev. 1

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago,
at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov

DOCUMENT AVAILABILITY
Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free at OSTI.GOV (http://www.osti.gov/),
a service of the U.S. Dept. of Energy’s Office of Scientific and Technical Information

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandra, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

SAM User’s Guide

prepared by
Rui Hu, Ling Zou, Guojun Hu, Travis Mui
Nuclear Science & Engineering Division, Argonne National Laboratory

February 2021

ANL/NSE-19/18 Rev. 1

ABSTRACT

The System Analysis Module (SAM) is a modern system analysis tool being developed at Ar-
gonne National Laboratory for advanced non-LWR safety analysis. It aims to provide fast-running,
whole-plant transient analyses capability with improved-fidelity for Sodium-cooled Fast Reactors
(SFR), Lead-cooled Fast Reactors (LFR), and Molten Salt Reactors (MSR) or Fluoride-cooled
High-temperature Reactors (FHR). SAM takes advantage of advances in physical modeling, nu-
merical methods, and software engineering to enhance its user experience and usability. It utilizes
an object-oriented application framework (MOOSE), and its underlying meshing and finite-element
library (libMesh) and linear and non-linear solvers (PETSc), to leverage the modern advanced soft-
ware environments and numerical methods.

This document provides a user’s guide, which will help users understand the input description
and core capabilities of the SAM code. A brief overview of the code is presented, as well as how to
obtain and run it. The input syntax for various parts of the code is provided. Additionally, a number
of example problems, starting with simple unit component problems to problems with increasing
complexity, are provided. Because the code is still under active development, this SAM User’s
Guide will evolve with periodic updates.

ii

iii

Contents

ABSTRACT ii

Contents vii

List of Figures viii

List of Tables ix

1 SAM Overview 1
1.1 Ultimate Goals and Objectives . 1
1.2 Software Structure . 2
1.3 Governing Theory . 2

1.3.1 Fluid dynamics . 2
1.3.2 Heat transfer . 3
1.3.3 Closure models . 3
1.3.4 Mass transport model development . 3
1.3.5 Reactor kinetics model development . 4
1.3.6 Numerical method . 4

1.4 Overview of Current Capabilities . 4

2 Running SAM 6
2.1 Pre-requisite . 6
2.2 Obtaining the Code . 6
2.3 Compiling the Code from Source . 7
2.4 Executing . 7
2.5 Outputs . 7

3 SAM Components 8

4 Input File Syntax 12
4.1 Global Parameters . 12
4.2 Equation of State (EOS) . 17

4.2.1 PTEquationOfState . 17
4.2.2 Built-in EOS . 18
4.2.3 Simple Linearized EOS . 18
4.2.4 PTFunctionsEOS . 19
4.2.5 TabulatedEquationOfState . 21
4.2.6 PTFluidPropertiesEOS . 22

4.3 Components . 23
4.3.1 PBOneDFluidComponent . 23
4.3.2 HeatStructure . 33
4.3.3 PBPipe . 36
4.3.4 PBCoreChannel . 39
4.3.5 PBDuctedCoreChannel . 43

iv

4.3.6 PBBypassChannel . 45
4.3.7 PBMoltenSaltChannel . 45
4.3.8 FuelAssembly . 46
4.3.9 DuctedFuelAssembly . 50
4.3.10 MultiChannelRodBundle . 51
4.3.11 HexLatticeCore . 54
4.3.12 PBCoupledHeatStructure . 56
4.3.13 HeatStructureWithExternalFlow . 59
4.3.14 HeatTransferWithExternalHeatStructure 61
4.3.15 PBHeatExchanger . 62
4.3.16 PBTDJ . 66
4.3.17 PBTDV . 67
4.3.18 PressureOutlet . 68
4.3.19 CoupledTDV . 68
4.3.20 CoupledPPSTDJ . 69
4.3.21 CoupledPPSTDV . 69
4.3.22 PBSingleJunction . 69
4.3.23 PBBranch . 70
4.3.24 PBVolumeBranch . 72
4.3.25 Valve . 73
4.3.26 PBLiquidVolume . 75
4.3.27 CoverGas . 76
4.3.28 PBPump . 77
4.3.29 StagnantVolume . 78
4.3.30 LiquidTank . 79
4.3.31 ReactorCore . 80
4.3.32 SurfaceCoupling . 81
4.3.33 ReactorPower . 82
4.3.34 PointKinetics . 83
4.3.35 ReferenceBoundary . 87
4.3.36 PipeChain . 88
4.3.37 ChannelCoupling . 88
4.3.38 HeatPipe . 89
4.3.39 MultiComponentArray . 94

4.4 Control System Components . 97
4.4.1 CTGeneric . 97
4.4.2 ControlSystem . 98
4.4.3 TripSystem . 99
4.4.4 CSAddition . 99
4.4.5 CSDivision . 100
4.4.6 CSMultiplication . 100
4.4.7 CSExponentiation . 101
4.4.8 CSSTDFunction . 102
4.4.9 CSDelay . 102
4.4.10 CSUnitTrip . 103

v

4.4.11 CSDifferentiation . 104
4.4.12 CSIntegration . 104
4.4.13 CSProportionIntegration . 105
4.4.14 CSLeadLag . 105
4.4.15 TSCompare . 106
4.4.16 TSBoolean . 107
4.4.17 TSDelay . 107
4.4.18 Input syntax . 108

4.5 ComponentInputParameters . 110
4.6 PostProcessors . 113

4.6.1 ComponentBoundaryEnergyBalance . 113
4.6.2 ComponentBoundaryFlow . 114
4.6.3 ComponentBoundaryScalarFlow . 114
4.6.4 ComponentBoundaryVariableValue . 114
4.6.5 ComponentNodalVariableValue . 115
4.6.6 ConductionHeatRemovalRate . 115
4.6.7 HeatExchangerHeatRemovalRate . 116

4.7 TimeSteppers . 116
4.7.1 CourantNumberTimeStepper . 116

4.8 Preconditioning . 117
4.9 Executioner . 119
4.10 Outputs . 125

5 Example Problems 134
5.1 Heat Conduction Problem . 134
5.2 Single Channel Flow . 139
5.3 Core Channel . 142
5.4 Heat Exchanger . 146
5.5 Volume Branch . 150
5.6 A Simple Loop Model . 156
5.7 A Simplified SFR Model . 161
5.8 Uncertainty Quantification using Dakota . 179

6 Uncertainty Quantification 180
6.1 Acquiring and Installing Dakota . 180
6.2 Dakota and SAM Coupling . 180
6.3 Multiple Node Execution (HPC cluster) . 180
6.4 File structure overview . 181
6.5 Example case: single node execution . 183

6.5.1 Dakota Input File . 183
6.5.2 Dakota-SAM Coupling File . 184
6.5.3 Dakota Output . 185

6.6 Example case: multiple node execution . 185
6.6.1 Dakota Input File . 185
6.6.2 Dakota-SAM Coupling File . 186

vi

6.6.3 Dakota Output . 186

ACKNOWLEDGMENTS 187

REFERENCES 187

vii

List of Figures

1.1 SAM Code Structure . 3
1.2 SAM simulation results of an SFR. 5
4.1 SAM PBOneDFluidComponent examples. 24
4.2 PBOneDFluidComponent with end element refinements. 25
4.3 Fuel bundles in (a) square-lattice, typically seen in light water reactor designs; and

(b) hexagonal-lattice, typically seen in sodium fast reactor designs. 27
4.4 Typical SFR wire-wrapped rod configuration. 28
4.5 An example of two-dimensional plate type of heat structure. 34
4.6 SAM’s PBPipe component, which consists of a PBOneDFluidComponent to model

the one-dimensional fluid flow and one layer (or several layers) of HeatStructure

to model its wall. 36
4.7 An input example of PBPipe with two layers of heat structures to model its wall.

For example, it could represent a layer of metal wall and an extra layer of thermal
insulation material. 37

4.8 PBCoreChannel component (a) SAM’s PBCoreChannel component simulates the
average coolant flow in rod bundles and heat conduction inside a fuel rod; and (b) An
example mesh used in the PBCoreChannel component, 2-D mesh for heat structure
and 1-D mesh for fluid flow. 39

4.9 Sketch of the regions in the multi-channel model. 51
4.10 Sketch of HexLatticeCore component. 54
4.11 Two types of PBHeatExchanger component designs. As an example, the two figures

show shell-and-tube heat exchanger design. 63
4.12 The PBLiquidVolume concept used in SAM. (a) PBLiquidVolume with ambient

pressure as its reference pressure; (b) PBLiquidVolume with an external CoverGas
to specify its reference pressure. 75

4.13 Sketch of a conventional 3-zone cylindrical heat pipe 89
5.1 SAM model of the 2-D heat conduction problem. 134
5.2 Comparisons of centerline temperature distributions of the heated rod, 2D conduction.136
5.3 Example of SAM results shown in Paraview. 139
5.4 Transient responses of the pipe under inlet temperature oscillation, BDF2. 140
5.5 The schematic of the spatial discretization of the core channel problem. 142
5.6 Temperature distribution of a counter-current heat exchanger. 146
5.7 The three-pipe-in and two-pipe-out VolumeBranch test model. 150
5.8 Input parameters of the three pipe in and two pipe out VolumeBranch test model. . 151
5.9 Transient temperature response at the VolumeBranch and pipe outlets. 151
5.10 Schematics of the a test loop problem. 156
5.11 Schematics of the a simple pool-type SFR model. 161
6.1 Dakota-SAM Coupling Scheme . 181

List of Tables

2.1 Software Libraries Used by SAM . 6
3.1 List of boundary condition type of components of SAM 8

viii

3.2 List of junction type of components of SAM . 9
3.3 List of non-geometric type of components of SAM 10
3.4 List of geometric and assembly type of components of SAM 11
4.1 SAM components that supports ComponentInputParameters feature 111
5.1 Comparison of SAM and Analytical Solutions for the Steady State Axial-Radial

Heat Conduction Problem . 135
6.1 Nominal Values of Uncertain Parameters . 183

ix

1 SAM Overview

The System Analysis Module (SAM) [1, 2, 3, 4] is an advanced system analysis tool being
developed at Argonne National Laboratory under the U.S. Department of Energy (DOE) Nuclear
Energy Advanced Modeling and Simulation (NEAMS) program. It aims to be a modern system
analysis code, which takes advantage of the advancements software design, numerical methods, and
physical models over the past two decades. SAM focuses on modeling advanced reactor concepts
such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-
cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are
distinguished from light-water reactors (LWR) in their use of single-phase, low-pressure, high-
temperature, and low Prandtl number (sodium and lead) coolants. This simple yet fundamental
change has significant impacts on core and plant design, the types of materials used, component
design and operation, fuel behavior, and the significance of the fundamental physics in play during
transient plant simulations.

SAM is aimed to solve the tightly-coupled physical phenomena including heat generation, heat
transfer, fluid dynamics, and thermal-mechanical response in reactor structures, systems and com-
ponents in a fully-coupled fashion but with reduced-order modeling approaches to facilitate rapid
turn-around for design and safety optimization studies. As a new code development, the initial effort
focused on developing modeling and simulation capabilities of the heat transfer and single-phase
fluid dynamics, as well as reactor point kinetics responses in reactor systems. This Chapter dis-
cusses goals and objectives, software structure, the governing theory, as well as current capabilities
of the code. In the coming years, the SAM code will continuously mature as a modern system
analysis tool for advanced (non-LWR) reactor design optimization, safety analyses, and licensing
support.

1.1 Ultimate Goals and Objectives

The ultimate goal of SAM is to be used in advanced reactor safety analysis for design optimiza-
tion and licensing support. The important physical phenomena and processes that may occur in
reactor systems, structures, and components shall be of interest during reactor transients including
Anticipated Operational Occurrence (AOO), Design Basis Accident (DBA), and additional postu-
lated accidents but not including severe accidents. Typical reactor transients include: loss of coolant
accidents, loss of flow events, excessive heat transfer events, loss of heat transfer events, reactiv-
ity and core power distribution events, increase in reactor coolant inventory events, and anticipated
transients without scram (ATWS).

As a modern system analysis code, SAM is also envisioned to expand beyond the traditional
system analysis code to enable multi-dimensional flow analysis, containment analysis, and source
term analysis, either through reduced-order modeling in SAM or via coupling with other simulation
tools. Additionally, the regulatory processes in the United States is being evolved to a risk-informed
approach that is based on first understanding the best-estimate behavior of the fuel, the reactor, the
reactor coolant system, the engineered safeguards, the balance of plant, operator actions, and all
of the possible interactions among these elements. To enable this paradigm, an advanced system
analysis code such as SAM must be able to model the integrated response of all of these physical
systems and considerations to obtain a best-estimate simulation that includes both validation and
uncertainty quantification.

1

The SAM code is aimed to provide improved-fidelity simulations of transients or accidents
in an advanced non-LWR, including three-dimension resolutions as needed or desired. This will
encompass the fuel rod, the fuel assembly, the reactor, the primary and intermediate heat transport
system, the balance-of-plant, the containment. Multi-dimension, multi-scale, and multi-physics
effects will be captured via coupling with other simulation tools, and computational accuracy and
efficiency will be state-of-the-art. Uncertainty quantification will be integrated into SAM numerical
simulations. Legacy issues such as numerical diffusion and stability in traditional system codes will
be addressed and the code will attract broad use across the nuclear energy community based on
its performance and many advantages relative to the legacy codes. The integrated architecture will
provide a robust toolset for decision making with full consideration of the various disciplines and
technologies affecting an issue.

1.2 Software Structure

SAM is being developed as a system-level modeling and simulation tool with higher fidelity
(compared to existing system analysis tools), and with well-defined and validated simulation capa-
bilities for advanced reactor systems. It provides fast-running, modest-fidelity, whole-plant transient
analyses capabilities. To fulfill the code development, SAM utilizes the object-oriented application
framework MOOSE [5] and its underlying meshing and finite-element library libMesh [6] and linear
and non-linear solvers PETSc [7], to leverage the available advanced software environments and nu-
merical methods. The high-order spatial discretization schemes, fully implicit and high-order time
integration schemes, and the advanced solution method (such as the Jacobian-free Newton-Krylov
(JFNK) method [8]) are the key aspects in developing an accurate and computationally efficient
model in SAM.

The software structure of SAM is illustrated in Figure 1.1. In addition to the fundamental
physics modeling of the single-phase fluid flow and heat transfer, SAM incorporates advances in the
closure models (such as convective heat transfer correlations) for reactor system analysis developed
over the past several decades. A set of Components, which integrate the associated physics mod-
eling in the component, have been developed for friendly user interactions. This component-based
modeling strategy is similar to what is implemented in RELAP-7 [9], which is also a MOOSE-based
system analysis tool (focused on LWR simulations). A flexible coupling interface has been devel-
oped in SAM so that multi-scale, multi-physics modeling capabilities can be achieved by integrating
with other higher-fidelity or conventional simulation tools.

1.3 Governing Theory

1.3.1 Fluid dynamics

Fluid dynamics is the main physical model of the SAM code. SAM employs a standard one-
dimensional transient model for single-phase incompressible but thermally expandable flow. The
governing equations consist of the continuity equation, momentum equation, and energy equations.
A three-dimensional module is also under development to model the multi-dimensional flow and
thermal stratification in the upper plenum or the cold pool of an SFR. Additionally, a subchannel
module will be developed for fuel assembly modeling.

2

!

SAM!

MOOSE!

Fundamental*Physics*
Models*

Component*Physics*
Integra8on*

Mul89Scale*Mul89
Physics*Integra8on*

STAR9CCM+*
SHARP*

SAS4A/SASSYS91*
…*

Suppor8ng*Elements*

Figure 1.1: SAM Code Structure

1.3.2 Heat transfer

Heat structures model heat conduction inside solids and permit the modeling of heat transfer at
interfaces between solid and fluid components. Heat structures are represented by one-dimensional
or two-dimensional heat conduction in Cartesian or cylindrical coordinates. Temperature-dependent
thermal conductivities and volumetric heat capacities can be provided in tabular or functional form.
Heat structures can be used to simulate the temperature distributions in solid components such as
fuel pins or plates, heat exchanger tubes, and pipe and vessel walls, as well as to calculate the
heat flux conditions for fluid components. Flexible conjugate heat transfer and thermal radiation
modeling capabilities are also implemented in SAM.

1.3.3 Closure models

The fluid equation of state (EOS) model is required to complete the governing flow equations,
which are based on the primitive variable formulation; therefore, the dependency of fluid properties
and their partial derivatives on the state variables (pressure and temperature) are implemented in
the EOS model. Some fluid properties, such as sodium, air, salts like FLiBe and FLiNaK, have
been implemented in SAM. Empirical correlations for friction factor and convective heat transfer
coefficient are also required in SAM because of its one-dimension approximation of the flow field.
The friction and heat transfer coefficients are dependent on flow geometries as well as operating
conditions during the transient.

1.3.4 Mass transport model development

The mass transport modeling capability is needed to model sources and transport of particles
for a number of applications, such as tritium transport, delayed neutron precursor drift, radioactive
isotope transport for molten salt fueled/cooled systems. A general passive scalar transport model

3

has been implemented in SAM, and it can be used to track any number of species carried by the
fluid flow.

1.3.5 Reactor kinetics model development

SAM employs a built-in point kinetics model, including reactivity feedback and decay heat
modeling. Various reactivity feedback mechanisms are included, such as the axial and radial ex-
pansion feedbacks due to thermal expansion and displacement effects. The effects of delay neutron
precursor drift in MSRs can also be modeled.

1.3.6 Numerical method

SAM is a finite-element-method based code. The “weak forms” of the governing equations are
implemented in SAM. It uses the Jacobian-Free Newton Krylov (JFNK) solution method to solve
the equation system. The JFNK method uses a multi-level approach, with outer Newton’s iterations
(nonlinear solver) and inner Krylov subspace methods (linear solver), in solving large nonlinear sys-
tems. The concept of ‘Jacobian-free’ is proposed, because deriving and assembling large Jacobian
matrices could be difficult and expensive. The JFNK method has become an increasingly popular
option for solving large nonlinear equation systems and multi-physics problems, as observed in a
number of different disciplines [8]. One feature of JFNK is that all the unknowns are solved simul-
taneously in a fully coupled fashion. This solution scheme avoids the errors from operator splitting
and is especially suitable for conjugate heat transfer problems in which heat conduction in a solid is
tightly coupled with fluid flow.

1.4 Overview of Current Capabilities

To develop a system analysis code, numerical methods, mesh management, equations of state,
fluid properties, solid material properties, neutronics properties, pressure loss and heat transfer clo-
sure laws, and good user input/output interfaces are all indispensable. SAM leverages the MOOSE
framework and its dependent libraries to provide JFNK solver schemes, mesh management, and I/O
interfaces while focusing on new physics and component model development for advanced reactor
systems. The developed physics and component models provide several major modeling features:

1. One-D pipe networks represent general fluid systems such as the reactor coolant loops.

2. Flexible integration of fluid and solid components, able to model complex and generic engi-
neering system. A general liquid flow and solid structure interface model was developed for
easier implementation of physics models in the components.

3. A pseudo three-dimensional capability by physically coupling the 1-D or 2-D components
in a 3-D layout. For example, the 3-D full-core heat-transfer in an SFR reactor core can be
modeled. The heat generated in the fuel rod of one fuel assembly can be transferred to the
coolant in the core channel, the duct wall, the inter-assembly gap, and then the adjacent fuel
assemblies.

4. Pool-type reactor specific features such as liquid volume level tracking, cover gas dynamics,
heat transfer between 0-D pools, fluid heat conduction, etc. These are important features for
accurate safety analyses of SFRs or other advanced reactor concepts.

4

5. A computationally efficient multi-dimensional flow model is under development, mainly for
thermal mixing and stratification phenomena in large enclosures for safety analysis. It was
noted that an advanced and efficient thermal mixing and stratification modeling capability
embedded in a system analysis code is very desirable to improve the accuracy of advanced
reactor safety analyses and to reduce modeling uncertainties.

6. A general mass transport capability has been implemented in SAM based on the passive scalar
transport. The code can track any number of species carried by the fluid flow for various
applications.

7. An infrastructure for coupling with external codes has been developed and demonstrated. The
code coupling with STAR-CCM+ [10], SAS4A/SASSYS-1 [11], Nek5000, and BISON [12]
have been demonstrated, while the coupling with PRONGHORN, RattleSnake, and POR-
TEUS codes are ongoing or being planned.

An example of SAM simulation results of an SFR is shown in Figure 1.2.

DHX$
IHX$ SHX$

(a) SAM model with 61 core channels (b) Coupled SAM and CFD code
simulation

Figure 1.2: SAM simulation results of an SFR.

5

2 Running SAM

2.1 Pre-requisite

SAM is built on the computational framework MOOSE (Multi-physics Object-Oriented Sim-
ulation Environment) to interface with LibMesh and PETSc to provide the underlying geometry
(mesh I/O) and numerical capabilities (finite element library and solvers). It requires all of the code
dependencies as MOOSE requires. A summary of the dependent libraries of SAM is listed in Table
2.1.

Table 2.1: Software Libraries Used by SAM

Library Origin Purpose
MOOSE [5] Idaho National Laboratory Computational framework, interfaces

other libraries
LibMesh [6] University of Texas, Austin Finite element library
PETSc [7] Argonne National Laboratory Parallel linear and nonlinear solvers
Hypre (optional) [13] Argonne National Laboratory Parallel linear and nonlinear solvers
MPICH [14] Argonne National Laboratory Message passing/parallel processing
TBB (optional) [15] Intel Corporation Multi-thread parallelism

The MOOSE development team maintains a compiled set of all dependencies, except MOOSE
and LibMesh, on the public MOOSE website (http://mooseframework.org/) with precompiled
packages containing Petsc, Hypre, MPICH, and TBB for several Mac OS and Linux systems.
MOOSE and LibMesh are available from the MOOSE GitHub site (https://github.com/idaholab/
moose.git). For advanced users, all the dependent libraries are open- source codes and can thus
be downloaded and compiled on Mac OS and Linux systems. The instructions for installing the
MOOSE dependency package, and for compiling Libmesh and MOOSE can also be found at the
public MOOSE website, http://www.mooseframework.org/.

2.2 Obtaining the Code

SAM is hosted in a private, access-controlled Git repository at Argonne National Laboratory.
All changes to the source code are committed with revision number and comments, and are tracked
in the repository. Contact the author of this User’s Guide if interested in obtaining the code.

After obtaining access to the code, one could use git commands to obtain the source code of
SAM:

git clone <repo_site_address>

MOOSE is set as a submodule of SAM, so that a reliable version of MOOSE is always available
and consistent with the product version of SAM. The MOOSE submodule can be obtained by:

git submodule update -init

or by

git clone https://github.com/idaholab/moose.git moose

6

http://mooseframework.org/
https://github.com/idaholab/moose.git
https://github.com/idaholab/moose.git
http://www.mooseframework.org/

2.3 Compiling the Code from Source

After obtained the MOOSE submodule, one would need to compile libMesh first before com-
piling MOOSE and SAM. Under the moose/scripts directory, the libMesh can be obtained and
compiled by:

./update_and_rebuild_libmesh.sh

After that, MOOSE and SAM can be compiled by use the default Makefile from the repository
under the SAM folder. Use

make

to compile the code on a single processor; or use

make -j<n>

to compile the code on n processors.

2.4 Executing

SAM, due to its dependence on MOOSE, is not compatible with Windows operating systems.
However it is fully compatible with Linux, Unix, and MacOS. It can be run from the shell prompt.

The execution command looks like:

sam-opt -i <input_file_name>

Many example test problems can be found under /tests/ subdirectory.

2.5 Outputs

SAM supports all MOOSE output file formats. It typically writes solution data to an ExodusII
file, and write post-processor and scalar variables to a separate comma separated values (CSV) file.
Several options exist for viewing ExodusII output files. One good choice is to use the open-source
software Paraview (www.paraview.org). The CSV file uses table-structured format, which can be
opened by many software such as Microsoft Excel.

7

www.paraview.org

3 SAM Components

The physics modeling (fluid flow and heat transfer) and mesh generation of individual reactor
components are encapsulated as Component classes in SAM along with some component specific
models. A set of components has been developed based on the finite-element fluid model and heat
conduction model, including:

1. Basic geometric components;

2. 0-D components for setting boundary conditions;

3. 0-D components for connecting 1-D components;

4. Assembly components by combining the basic geometric components and the 0-D connecting
components; and

5. Non-geometric components for physics integration.

A brief description of major SAM components is listed in Tables 3.1 - 3.4. The physics models
associated with these components will be discussed in SAM Theory Manual, and the input format
is discussed in Section 4.

Table 3.1: List of boundary condition type of components of SAM

Component name Descriptions Dimension
PBTDJ An inlet boundary in which the flow velocity and

temperature are provided by pre-defined functions.
0-D

CoupledPPSTDJ CoupledPPSTDJ is a special PBTDJ component that
is designed to facilitate MultiApp simulations.

0-D

PBTDV A boundary in which pressure and temperature con-
ditions are provided by pre-defined functions.

0-D

CoupledTDV A time-dependent-volume boundary in which
boundary conditions are provided by other codes in
coupled code simulation.

0-D

CoupledPPSTDV CoupledPPSTDV is a special PBTDV component
that is designed to facilitate MultiApp simulations.

0-D

PressureOutlet A subset of PBTDV, will be removed. 0-D
ReferenceBoundary ReferenceBoundary component provides a fixed

value boundary condition to a one-dimensional fluid
type of component.

0-D

StagnantVolume Models a stagnant liquid volume, with connections
to other 0-D volumes but no connections to 1-D fluid
components.

0-D

8

Table 3.2: List of junction type of components of SAM

Component name Descriptions Dimension
PBSingleJunction Models a zero-volume flow joint, where only two 1-

D fluid components are connected.
0-D

PBBranch Models a zero-volume flow joint, where multiple 1-
D fluid components are connected.

0-D

PBVolumeBranch Considering the volume effects of a PBBranch com-
ponent so that it can account for the mass and energy
in-balance between inlets and outlets due to inertia.

0-D

PBPump Simulates a pump component, in which the pump
head is dependent on a pre-defined function.

0-D

PBLiquidVolume A 0-D liquid volume with cover gas (the liquid level
is tracked and the volume can change during the
transient).

0-D

LiquidTank The LiquidTank component of SAM simulates a PB-
VolumeBranch (or PBLiquidVolume) and the heat
structure (modeled as PBCoupledHeatStructure) at-
tached to it in order to capture this additional thermal
inertia.

0-D fluid, 1-D
or 2-D structure

9

Table 3.3: List of non-geometric type of components of SAM

Component name Descriptions Dimension
ReactorCore Models a pseudo three-dimensional reactor core; It

consists of member core channels (with duct walls)
and bypass channels.

1-D fluid, 1-D
or 2-D structure

CoverGas A 0-D gas volume that is connected to one or multi-
ple liquid volumes.

0-D

SurfaceCoupling The SurfaceCoupling component models the heat
transfer between two solid surfaces, suitable for ra-
diation heat transfer or gap heat transfer between
them.

ND

ChannelCoupling A non-geometric component for coupling two 1-D
fluid ND components (with energy exchange).

ND

ReactorPower A non-geometric component describing the total re-
actor ND power.

ND

PointKinetics The PointKinetics component is the build-in point
kinetics model of SAM, which models the transient
behaviors of reactor fission power, delayed-neutron
precursors, as well as reactivity feedback from other
components, e.g., core channels.

ND

PipeChain A non-geometric component for connecting a num-
ber of ND fluid components.

ND

HeatTransferWith
ExternalHeatStructure

A non-geometric component for connecting a num-
ber of ND fluid components.

ND

10

Table 3.4: List of geometric and assembly type of components of SAM

Component name Descriptions Dimension
PBOneDFluidComponent Simulates 1-D fluid flow using the primitive variable

based fluid model
1-D

HeatStructure Simulates 1-D or 2-D heat conduction inside solid
structures

1-D or 2-D

PBCoupledHeatStructure The heat structure connecting two liquid compo-
nents (1-D or 0-D).

1-D or 2-D

PBPipe Simulates fluid flow in a pipe and heat conduction in
the pipe wall.

1-D fluid, 1-D
or 2-D structure

PBHeatExchanger Simulates a heat exchanger, including the fluid flow
in the primary and secondary sides, convective heat
transfer, and heat conduction in the tube wall.

1-D fluid, 1-D
or 2-D structure

PBCoreChannel Simulates reactor core channels, including 1-D flow
channel and the inner heat structures (fuel, gap, and
clad) of the fuel rod.

1-D fluid, 1-D
or 2-D structure

PBDuctedCoreChannel Simulates reactor core channels with an outer heat
structure of the duct wall.

1-D fluid, 1-D
or 2-D structure

PBBypassChannel Models the bypass flow in the gaps between fuel as-
semblies.

1-D

FuelAssembly Models reactor fuel assemblies composed of multi-
ple CoreChannels, representing different regions of
a fuel assembly (core, gas plenum, reflector, shield,
etc.).

1-D fluid, 1-D
or 2-D structure

DuctedFuelAssembly Model reactor fuel assemblies composed of multiple
DuctedCoreChannels.

1-D fluid, 1-D
or 2-D structure

MultiChannelRodBundle Models the rod bundle with a multi-channel model,
in which multiple CoreChannels and the inter-
channel mixing are defined and created.

1-D fluid, 1-D
or 2-D structure

HexLatticeCore Models a hexagonal lattice core, in which the
CoreChannels and HeatStructures are defined and
created.

1-D fluid, 1-D
or 2-D structure

PBMoltenSaltChannel PBMoltenSaltChannel is a component intended to
model the core behavior of molten-salt reactor de-
signs.

1-D

HeatPipe HeatPipe is a component to model heat pipes. 1-D fluid, 1-D
or 2-D structure

HeatStructure
WithExternalFlow

HeatStructureWithExternalFlow is also a
HeatStructure-based component similar to PB-
CoupledHeatStructure, however with the main
purpose to facilitate code-to-code coupling via its
boundary surfaces.

1-D or 2-D
structure

11

4 Input File Syntax

SAM uses a block-structured input file. Each block is identified with square brackets. The open-
ing brackets contain the type of the input block and the empty brackets mark the end of the block.
Each block may contain sub-blocks. Each sub-block must have a unique name when compared with
all other sub-blocks in the current block.

Line inputs are given as parameter and value pairs with an equal sign between them. They
specify parameters to be used by the object being described. The parameter is a string, and the
value may be a string, a Boolean value, an integer, a real number, or a list of strings, integers, or real
numbers. Lists are given in single quotes and are separated by whitespace. Sub-blocks normally
contain a type line input. This line specifies the particular type of object being described.

All units used in SAM are SI units. This standardizes the model input by eliminating the possi-
bility of errors caused by using one set of units for one model and another set of units for a different
model. “#” symbol indicates comments in the input file and can be located anywhere in the input
file.

A quick example is given to demonstrate the basic block-structured syntax of SAM input file:
[BlockName] # Beginning of an input block

RealNumber = 1.0 # This specifies a real number
Boolean = true # This specifies a boolean value
MyString = SAM # This specifies a string value

An empty line will be simply ignored
[./ SubBlockName] # Beginning of an input sub -block

Numbers = '1.0 2.0 3.0' # This specifies a list of numbers
Strings = 'Hello World ' # This specifies a list of strings

[../] # Ending of an input sub -block
[] # Ending of an input block

The following subsections have brief descriptions of each block used in SAM input. This User’s
Guide is intended to help users understand the basics of the SAM code and learn how to run it. The
details of the input parameters and modeling options will be discussed in a more detailed User’s
Manual in the future when the SAM code becomes more mature.

4.1 Global Parameters

The GlobalParams block specifies the global parameters used by the code such as global initial
conditions, the scaling factors for the primary variable residuals, etc. The modeling parameters
associated with the primitive-variable-based fluid model can be defined in the PBModelParams
sub-block.

The full list of input parameters of the GlobalParams block is shown below. The line inputs are
listed in a three-column format, with the first column showing the available input parameters, the
second column showing the default value of the input parameters, and the third column showing
a short description of the input parameters. “= (required)” is listed in some cases in the second
column for parameter in other input blocks, which indicates that the parameter must be provided in
the input file otherwise the code cannot be executed.
[GlobalParams]

SC_HTC = 1 # Sensitivity coefficient for HTC
SC_WF = 1 # Sensitivity coefficient for wall friction
Tsolid_sf = 0.001 # Scaling factor for solid temperature variable.
active = __all__ # If specified only the blocks named will be

visited and made active

12

global_init_P = 100000 # Global initial fluid pressure
global_init_T = 300 # Global initial temperature for fluid and solid
global_init_V = 0.0001 # Global initial fluid velocity
gravity = '0 0 -9.8' # Gravity vector
inactive = (no_default) # If specified blocks matching these identifiers

will be skipped.
model_type = 1 # Which physical model to use (currently not

in use)
scaling_factor_var = '1 0.001 1e-06' # Scaling factors for fluid variables (p, v,

T)

[./ PBModelParams]
Courant_control = (no_default) # If to set the dt according to the

target Courant number
P_bounds = '0 1e+08' # Lower and upper bounds for pressure

variable
T_bounds = '100 1200' # Lower and upper bounds for temperature

variable
V_bounds = ' -1000 1000' # Lower and upper bounds for velocity

variable
active = __all__ # If specified only the blocks named

will be visited and made active
decay_heat_precursor = (no_default) # The name of decay heat precursor

in fluid transport
fluid_conduction = 0 # If modeling axial fluid conduction
global_init_PS = (no_default) # The global initial value of passive

scalar in fluid transport
inactive = (no_default) # If specified blocks matching these

identifiers will be skipped.
low_advection_limit = 1e-07 # Lower bound of velocity for advection

dominant region
p_order = 1 # P-order of the mesh
passive_scalar = (no_default) # The name of passive scalar in fluid

transport
passive_scalar_decay_constant = (no_default) # The decay constant of passive scalar

(e.g. delayed neutron precursors
or decay heat precursors in fluid
transport

passive_scalar_diffusivity = (no_default) # The diffusivity of passive scalar
in fluid transport

pbm_scaling_factors = (no_default) # Scaling factors for each variable
pspg = 1 # If using pspg stabilization scheme
scaling_velocity = (no_default) # Global scaling velocity for PSPG
supg = 1 # If using supg stabilization scheme
supg_max = 0 # If using pspg stabilization scheme
variable_bounding = (no_default) # If using variable bounding
total_mass_check = 0 # If turning on built -in total mass pps
mass_flow_rate_check = 0 # If truning on built -in mass flow rate pps
net_mass_flow_rate_check = 0 # If turning on built -in net mass flow rate pps
energy_balance_check = 0 # If turning on built -in energy balance pps

[../]
[]

For each input parameter in the GlobalParams input block, details are provided as follows:

• global_init_P

As the name suggests, it specifies the global initial value of fluid pressure, which however can
be overridden by initial values specified locally in the component level, for example, initial P of
PBOneDFluidComponent (section 4.3.1).

If not specified, a default value, 105 Pa, is used for this parameter.

13

• global_init_V

This input parameter specifies the global initial value of fluid velocity, which can also be overrid-
den by initial values specified locally in the component level, for example, initial V of PBOneD-
FluidComponent (section 4.3.1).

If not specified, a default value, 10-4 m/s, is used.

• global_init_T

This input parameter specifies the global initial value of fluid temperature, which can also be
overridden by initial values specified locally in the component level, for example, initial T of
PBOneDFluidComponent (section 4.3.1).

If not specified, a default value, 300 K, is used.

• scaling_factor_var

This input parameter specifies the scaling factors to the residuals of three fluid equations, i.e.,
mass, momentum, and energy equations. The default values are ‘1 0.001 1e-06’, which general
work pretty well for most cases.

• Tsolid_sf

This input parameter specifies the scaling factor to the residual of heat conduction equation in
solids, e.g., heat structures. The default value is 0.001.

• SC_HTC

This input parameter works as a global multiplier to the heat transfer coefficient used in the code,
e.g., HTCnew = HTCoriginal × SC HTC. Similar to those global initial values, this parameter can
also be overridden locally in the component level, for example, SC HTC of PBOneDFluidCom-
ponent (section 4.3.1).

• SC_WF

This input parameter works as a global multiplier to the wall friction coefficient used in the code,
e.g., fnew = foriginal × SC WF. This parameter can also be overridden locally in the component
level, for example, SC WF of PBOneDFluidComponent (section 4.3.1).

• gravity

This input parameter is the vector form of gravitational constant in (x,y,z) coordinates. The default
value is ‘0 0 -9.8’.

• model_type

This input parameter specifies the model type used in SAM simulation, 1 for one-dimensional
model (default value), and 2 for three-dimensional model. However, currently this input parameter
is not used.

Input parameters of the input sub-block, PBModelParams, is discussed as follows:

14

• Courant_control

This is a boolean type of input parameter, by default, false. If specified true, the code uses the
maximum Courant number (automatically calculated) as an indicator to control the time step
size during a transient simulation. It is used in combination of the CourantNumberTimeStepper

PostProcessor, see section 4.7.1.

• variable_bounding

This input parameter specifies if variables bounding should be applied to the main fluid variables,
i.e., pressure, velocity, and temperature. By default, it is false, i.e., no bounding is applied.

• P_bounds, T_bounds, and V_bounds

These input parameters specify the bounds for the three main fluid variables. The default values
are: P_bounds = ‘0 1.0e8’ Pa, V_bounds = ‘-1.0e-3 1.0e3’ m/s, and T_bounds = ‘100 1.2e3’

K. These bounds are only applied when variable_bounding = true.

• fluid_conduction

This input parameter specifies if axial heat conduction effect of the fluid should be modeled,
which, if modeled, would be included in the fluid energy equation. Such an effect is generally
only important in applications where high thermal-conductivity fluids, such as liquid metals, are
used. An example application is sodium-cooled fast reactor analysis. For most other applications,
it is safe to not include this effect.

• passive_scalar

This input parameter accepts a list of names of passive scalars that are passively transported with
fluid flow. For example, passive_scalar = ‘particle1 particle2 particle3’.

• global_init_PS

This input parameter specifies the global initial values of passive scalars. For example, global_init_PS
= ‘10.0 80.0 20.0’. Similar to fluid properties, such as pressure, this global initial condition
could be overridden by locally specified initial conditions in in the component level, for example,
initial PS of PBOneDFluidComponent (section 4.3.1).

• passive_scalar_diffusivity

This input parameter specifies the diffusivities of passive scalars in fluid.

• passive_scalar_decay_constant

This input parameter specifies the decay constants of passive scalars. If part of the passive_scalar

list is also defined as decay_heat_precursor, the corresponding decay constants will be used as
decay heat precursor decay constant to compute decay power.

• decay_heat_precursor

This input parameter defines a list of decay heat precursors, each of which must have been speci-
fied in the passive_scalar list, to compute decay power.

15

• p_order

This input parameter specifies the p-order of one- and two-dimensional meshes generated within
the code. The default value is 1, i.e., first-order.

• pbm_scaling_factors

This input parameter works similarly to the higher level global input parameter, scaling_factor_var.
If specified, it overrides scaling_factor_var.

• pspg

This input parameter specifies if PSPG stabilization should be used in the fluid mass equation. By
default, it is true (1).

• scaling_velocity

This input parameter specifies a reference velocity for scaling to be used in the PSPG scheme.
Currently, not used.

• supg

This input parameter specifies if SUPG stabilization should be used in the fluid momentum and
energy equations. By default, it is true (1).

• supg_max

In some extreme cases, for example, fluid velocities very close to 0. The FEM scheme may
not be stable enough to cause unphysical oscillations in numerical solutions. With supg_max =

true, stabilization parameters are adjusted to larger values that help suppress such non-physical
oscillations. In most cases, this is not needed, and it is false (0), by default.

• low_advection_limit

This parameter specifies the lower bound of velocity for advection dominant region. When the
velocity magnitude is smaller than this value, SUPG stabilization scheme is deemed to be unnec-
essary, and is turned off. The default value of this input parameter is 10−7 m/s.

• total_mass_check

This parameter specifies if turning on the built-in total mass postprocessor for checking the mass
in different 1-D fluid components, 0-D volumes, and fluid loops.

• mass_flow_rate_check

This parameter specifies if turning on the built-in mass flow rate postprocessor for obtaining the
mass flow rate in 1-D fluid components.

• net_mass_flow_rate_check

This parameter specifies if turning on the built-in net mass flow rate postprocessor for obtaining
the mass flow rate in 1-D fluid components.

• energy_balance_check This parameter specifies if turning on the built-in energy balance postpro-
cessor for obtaining the energy balance rate in 1-D fluid components.

16

An example input of the GlobalParams block is shown below. Note that only a small fraction
of the parameters were provides. For other unprovided input parameters, default values are used if
they are available in the code (as listed in the above input description). If the default value is not
available, the parameter is not required and its intended function is not activated.

[GlobalParams]
global_init_P = 1.2e5
global_init_V = 1
global_init_T = 628.15
scaling_factor_var = '1 1e-3 1e-6'
[./ PBModelParams]

p_order = 2
[../]

[]

Another example is given on passive scalars. There are eight passive scalars specified in PBModelParams,
six of which are also defined as decay_heat_precursor.

[GlobalParams]
global_init_P = 1.1e5
global_init_V = 0.5
global_init_T = 628.15
Tsolid_sf = 1e-1

[./ PBModelParams]
pbm_scaling_factors = '1 1e-3 1e-6'
passive_scalar = 'TEST235 -group0 TEST235 -group1 TEST235 -group2 TEST235 -group3

TEST235 -group4 TEST235 -group5 c1 c6'
passive_scalar_diffusivity = '0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0'
passive_scalar_decay_constant = '2.722 1.026 0.314 0.118 0.034 0.012 0.0124

3.010 '
global_init_PS = '0.0 0.0 0.0 0.0 0.0 0.0 1.94944E+01 3.45288E-13'
p_order = 2
Courant_control = true
decay_heat_precursor = 'TEST235 -group0 TEST235 -group1 TEST235 -group2 TEST235 -group3

TEST235 -group4 TEST235 -group5 '
[../]

[]

4.2 Equation of State (EOS)

SAM provides different options in specifying fluid properties in simulations. Users could choose
from SAM’s built-in fluid library for commonly-used fluids, including air, nitrogen, helium, sodium,
two types of molten salt (Flibe and Flinak), and one simulant oil (DowthermA).

4.2.1 PTEquationOfState

PTEquationOfState is an abstract base class for the various EOS provided by SAM, thus it
cannot be directly used in an input model. It takes several input parameters that are common for
specific EOS given in the following subsections. These parameters are listed and explained below.

[./ PTEquationOfState]
type = PTEquationOfState
p_0 = 100000 # Reference pressure
eos_test = false # Option to output fluid properties to a CSV file
eos_test_Tmin = 273.15 # Minumum temperature for output
eos_test_Tmax = 2273.15 # Maximum temperature for output
eos_test_num = 201 # Number of temperature nodes for output

17

[../]

• p_0

A reference pressure with default value of 105 Pa. For this EOS, it is not used and safe to
leave it unspecified.

• eos_test, eos_test_Tmin, eos_test_Tmax, eos_test_num

With this set of input parameters, the user can output all fluid properties as a function of tem-
perature to a CSV file. This feature allows users checking the consistency of provided EOS
in a test run. The output file is named by: ‘eosName-SAMTest.csv’. Tips: users are recom-
mended to double-check that there are no non-physical values in fluid properties because it
brings in convergence difficulty to the code.

4.2.2 Built-in EOS

SAM provides several built-in EOS for users to pick from. These model requires minimum
input effort, and examples are given as follows:

[./ air_eos]
type = AirEquationOfState

[../]
[./ Helium]

type = HeEquationOfState
[../]
[./N2]

type = N2EquationOfState
[../]
[./ sodium]

type = PBSodiumEquationOfState
[../]
[./ eos]

type = SaltEquationOfState
salt_type = Flibe

[../]
[./ eos]

type = SaltEquationOfState
salt_type = Flinak

[../]
[./ eos]

type = SaltEquationOfState
salt_type = DowthermA

[../]

4.2.3 Simple Linearized EOS

SAM also provides another simple equation of state, in which all properties, except density and
specific enthalpy, are constant user-specified input values. The complete input parameters of this
simple equation of state is given as follows:

[./ PTConstantEOS]
SC_cp = 1 # Sensitivity coefficient for heat capacity
SC_k = 1 # Sensitivity coefficient for thermal conductivity
SC_mu = 1 # Sensitivity coefficient for viscosity
SC_rho = 1 # Sensitivity coefficient for density

18

T_0 = (required) # Reference temperature
beta = 0 # Coefficient of thermal expansion
cp = (required) # Specific heat
cv = (no_default) # Specific heat
h_0 = (required) # Reference internal enthalpy
k = (required) # Thermal conductivity ,W/(m-K)
mu = (required) # Dynamic viscosity , Pa.s
p_0 = 100000 # Reference pressure
rho_0 = (required) # Reference density
type = PTConstantEOS

[../]

Density is a linear function of temperature using the provided thermal expansion coefficient, β ,
which is calculated as:

ρ = ρ0−ρ0β (T −T0)

Tips: a non-zero thermal expansion coefficient is needed to provide the driven force for natural
circulation flow in a close loop. Specific enthalpy is also linearly dependent on temperature,

h = h0 + cp(T −T0)

• SC_cp, SC_k, SC_mu, SC_rho

These are sensitivity coefficients that are multiplied to the values of specific heat, thermal
conductivity, viscosity, and density of the fluid. They are most useful for uncertainty quantifi-
cation, and by default, are zero. For normal applications, they could be simply ignored. These
parameters are available for all equation of states implemented in SAM code, including those
built-in fluid library discussed earlier.

• p_0

A reference pressure with default value of 105 Pa. For this EOS, it is not used and safe to
leave it unspecified.

Other input parameters are self-explanatory and thus not discussed further. An example is given
as follows:

[EOS]
[./ eos]

type = PTConstantEOS
p_0 = 1e5 # Pa
rho_0 = 865.51 # kg/mˆ3
beta = 2.7524e-4 # Kˆ{-1}
cp = 1272.0 # J/kg-K, at Tavg;
h_0 = 7.9898 e5 # J/kg
T_0 = 628.15 # K
mu = 2.6216e-4 # Pa-s
k = 72 # W/m-K

[../]
[]

4.2.4 PTFunctionsEOS

In addition to the simple linearized equation of state, SAM also provides PTFunctionsEOS to
accept more complex user-defined fluid properties in terms of pressure and temperature-dependent
functions. Its input parameters are listed as follows:

19

[./ PTFunctionsEOS]
type = PTFunctionsEOS
p_0 = 100000 # Reference pressure
SC_cp = 1 # Sensitivity coefficient for heat capacity
SC_k = 1 # Sensitivity coefficient for thermal conductivity
SC_mu = 1 # Sensitivity coefficient for viscosity
SC_rho = 1 # Sensitivity coefficient for density
cp = (required) # Specific heat capacity
rho = (required) # Density
k = (required) # Thermal conductivity , W/(m-K)
mu = (required) # Dynamic viscosity , Pa.s
enthalpy = (optional) # Specific enthalpy
T_min = (optional) # Valid minimum temperature for built -in enthalpy calculation
T_max = (optional) # Valid maximum temperature for built -in enthalpy calculation
T_nodes = 51 # Number of temperature nodes for built -in enthalpy calculation
h_0 = 0 # Reference specific enthalpy at the minimum valid temperature

[../]

Among these input parameters, SC_cp, SC_k, SC_mu, SC_rho, and p_0, are the same as described in
section 4.2.3. Other parameters are described as follows:

• rho, cp, mu, k (required)

All these input parameters are required. Each of them accepts either a constant value or a
function name, which should have been specified in the [Functions] input block.

• enthalpy

The input parameter enthalpy specifies the user-provided function name for specific enthalpy.
The function itself should have been defined in [Functions] input block. Warning: user
needs to ensure the consistency between specific enthalpy and specific heat capacity, i.e.
specific enthalpy is integrated from the specific capacity; otherwise, convergence difficulty
could show up.

• T_min, T_max, T_nodes, and h_0

The users are advised to ignore the enthalpy input and provide a valid temperature range for
built-in specific enthalpy calculation. Given the valid temperature range with input parameters
T_min, T_max, and T_nodes, the code will calculate the specific enthalpy based on the user-
provided specific heat capacity function. The built-in calculation is performed by:

h(T) = hi +
Cp(T)+Cp(Ti)

2
(T −Ti) (4.1)

Ti = Tmin + i× Tmax−Tmin

Tnodes−1
, for i = 0,1, · · · ,Tnodes−1 (4.2)

where Ti is the lower-bound temperature node for T and hi is the specific enthalpy pre-
calcuated with this formulation on the temperature node Ti. h_0 provides the reference specific
enthalpy at the minimum valid temperature T_min. The default value of 0 is a good choice for
the reference specific enthalpy.

An example of using ‘PTFunctionsEOS’ is given as follows:

[Functions]
[./ enthalpy_fn]

20

type = PiecewiseLinear
x = '428.15 628.15 1028.15 ' # 'x' really means temperature.
y = '5.4458 e5 7.9898 e5 1.30778 e6'

[../]
[]

[EOS]
[./ eos]

type = PTFunctionsEOS
rho = 865.51
cp = 1272.0
mu = 2.6216e-4
k = 72
enthalpy = enthalpy_fn

[../]
[]

4.2.5 TabulatedEquationOfState

It is often the case users know fluid properties at discrete temperature nodes instead of a contin-
uous function of temperature, TabulatedEquationOfState is an additional equation of state to accept
user-provided temperature-dependent fluid properties. Its input parameter list is given as follows:

[./ TabulatedEquationOfState]
type = TabulatedEquationOfState
SC_cp = 1 # Sensitivity coefficient for heat capacity
SC_k = 1 # Sensitivity coefficient for thermal conductivity
SC_mu = 1 # Sensitivity coefficient for viscosity
SC_rho = 1 # Sensitivity coefficient for density
temperature = (required) # Vector of temperature
rho = (required) # Vector of density
cp = (required) # Vector of specific heat capacity
mu = (required) # Vector of viscosity
k = (required) # Vector of thermal conductivity
interp_type = Linear # Type of interpolation: Linear or Spline
h_0 = 0 # Reference specific enthalpy at minimum valid temperature

[../]

Among these input parameters, SC_cp, SC_k, SC_mu, and SC_rho are the same as described in section
4.2.3. Other parameters are described as follows:

• temperature (required)

This is a required parameter that accepts the vector temperature listed in an increasing order.
The valid temperature range for this EOS is the first and last entry in this vector.

• rho, cp, mu, k (required)

These are requires parameters that accepts the vector of density, specific heat capacity, vis-
cosity, and thermal conductivity listed corresponding to the temperature entry specified for
temperature. The vector size of temperature, rho, cp, mu, and k should be equal.

• interp_type

This parameter specifies how the fluid properties are interpolated based on temperature. The
options are ‘Linear’ and ‘Spline’. Linear and cubic spline interpolation will be used for
‘Linear’ and ‘Spline’, respectively.

21

• h_0

This parameter specifies the reference specific enthalpy at the minimum valid temperature. If
this reference value is not known, the default value of 0 is recommended.

An example of using ‘TabulatedEquationOfState’ is given as follows:

[EOS]
[./ eos]

type = TabulatedEquationOfState
interp_type = Linear
temperature = '275 280 285 290 295'
rho = '999.94 999.91 999.52 998.80 997.81 '
cp = '4213.34 4200.97 4192.80 4187.31 4183.59 '
k = '0.5659 0.5760 0.5854 0.5942 0.6025 '
mu = '1.682E-03 1.434E-03 1.239E-03 1.084E-03 9.578E-04'
h_0 = 7859.83

[../]
[]

4.2.6 PTFluidPropertiesEOS

To take advantages of many existing built-in fluid properties provided within the MOOSE frame-
work, SAM provides an “interface” class, PTFluidPropertiesEOS, to access these fluid property
libraries. Its input parameter list is given as follows:

[./ PTFunctionsEOS]
SC_cp = 1 # Sensitivity coefficient for heat capacity
SC_k = 1 # Sensitivity coefficient for thermal conductivity
SC_mu = 1 # Sensitivity coefficient for viscosity
SC_rho = 1 # Sensitivity coefficient for density
fp = (required) # The name of the user object for fluid properties
type = PTFluidPropertiesEOS

[../]

Other than the four sensitivity coefficients, the only user input is a name pointing to a MOOSE-
provided fluid property library. This is a required input parameter:

• fp (required)

This is a required parameter that accepts the name of the user object for a MOOSE-provided
fluid library. This user object should have been provided in a separate material properties
input block, [MaterialProperties].

An example of PTFluidPropertiesEOS usage is given as:

[EOS]
[./ eos]

type = PTFluidPropertiesEOS
fp = fluid_props # Pointing to a user object provided

in the following MaterialProperties block
[../]

[]

[MaterialProperties]
[./ fluid_props]

type = IdealGasFluidProperties # MOOSE -provided fluid library
gamma = 1.4
R = 286.9

22

mu = 2.e-5 #Pa-s
k = 0.03

[../]
[]

4.3 Components

4.3.1 PBOneDFluidComponent

PBOneDFluidComponent is the most basic fluid component in SAM. It represents a unit one-
dimensional (1D) component to simulate the 1D fluid flow in a channel. The geometry parameters
such as the hydraulic diameter, flow area, and length, are provided in the input file. The wall friction
and heat transfer coefficients can be calculated through the closure models based on flow conditions
and geometries or provided by the user input. Internal volumetric heating (or cooling) can be spec-
ified by the user input as well. The associated input parameters of the PBOneDFluidComponent
Component block are shown below.

[./ PBOneDFluidComponent]
A = (required) # Area of the One -D fluid component
Cgb = 1 # Mixing coefficient due to buoyancy

and geometry effects
Cgv = (no_default) # Mixing coefficient due to velocity

and geometry effects
Dh = (required) # Hydraulic diameter
HTC_geometry_type = Pipe # Heat transfer geometry type
HTC_user_option = Default # Heat transfer correlation user option
HT_surface_area_density = (no_default) # Heating surface density
HoD = 1 # wire pitch ratio , height to diameter
Hw = (no_default) # Convective heat transfer coefficient
Ph = (no_default) # Heated perimeter
PoD = 1 # pitch to diameter ratio for parallel bundle
SC_HTC = 1 # Sensitivity coefficient for HTC ,

multiplicative
SC_WF = 1 # Sensitivity coefficient for wall friction ,

multiplicative
WF_geometry_type = Pipe # wall friction geometry type
WF_user_option = Default # user -option for wall friction model
axial_mixing = 0 # If the 1-D axial mixing model is activated
component_type = PBOneDFluidComponent # The type of the component
end_elems_refinement = 1 # number of element for the end element

in this OneDComp
eos = (required) # The name of EOS to use
f = (no_default) # friction
fluid_conduction = (no_default) # if modeling the fluid axial conduction
heat_source = 0. # Volumetric heat source
initial_P = (no_default) # Initial pressure in the OneDComp
initial_PS = (no_default) # Initial value of passive scalar

in the OneDComp
initial_T = (no_default) # Initial temperature in the OneDComp
initial_V = (no_default) # Initial velocity in the OneDComp
inlet_area_ratio = 1 # Volume area over inlet (jet) area
input_parameters = (no_default) # Name of the ComponentInputParameters

user object
lam_factor = 1 # a user -input shape factor for laminar

friction factor for non -circular
flow channels

length = (required) # Length of the OneDComp
n_elems = (required) # number of element in this OneDComp
n_layers_coolant = (no_default) # Number of layers in the coolant channel

23

offset = '0 0 0' # Offset of the origin for mesh generation
orientation = '0 0 1' # Orientation vector of the component
position = '0 0 0' # Origin (start) of the component
rotation = 0 # Rotation of the component (in degrees)
roughness = 0 # roughness , [m]
scalar_source = (no_default) # Volumetric scalar source
scaling_velocity = (no_default) # a user -input global velocity for PSPG

scheme
tao_pspg = (no_default) # tao_pspg
tao_supg = (no_default) # tao_supg
turb_factor = 1 # a user -input shape factor for turbulent

friction factor for non -circular
flow channels

type = PBOneDFluidComponent

User_defined_HTC_parameters = '0 0 0 0 0 0 0' # User -defined HTC model parameters
User_defined_WF_parameters = '0 0 0' # User -defined WF model parameters
coolant_density_reactivity_feedback = 0 # Enable coolant density reactivity

feedback.

coolant_reactivity_coefficients = (no_default) # Coolant reactivity coefficients
(delta_k / k per kg)

coolant_reactivity_coefficients_fn = (no_default) # Coolant reactivity
coefficients function.

[../]

Length

Position (x0,y0,z0)

Orientation (dx,dy,dz)

D

(a) A round pipe

Flow Area (A)

Wetted perimeter (P)

(b) A pipe with irregular cross section

Figure 4.1: SAM PBOneDFluidComponent examples.

Each of the input parameters are discussed as follows. Geometry-related input parameters are
discussed first,

• A (required)

Cross-sectional (flow) area of the flow channel. For example, for round pipes, it is simply πD2/4,
see figure 4.1.

• length (required)

Length of the flow channel, see figure 4.1.

• position

24

The origin of the one-dimensional pipe, in (x0, y0, z0), see figure 4.1. The default value is (0, 0,
0), i.e., position = ‘0 0 0’.

• orientation

The orientation vector of the one-dimensional pipe, in (dx, dy, dz), see figure 4.1. Note that it
does not have to be a unit vector. The default value is (0, 0, 1), i.e., orientation = ‘0 0 1’.

• n_elemes (required)

Number of elements used for the component in the axial direction.

• Dh (required)

Hydraulic diameter of the flow channel. For round pipes, it is simply the pipe diameter; while for
flow channels with irregular shape of cross section, it is calculated as:

Dh =
4A
P

where A is the cross-sectional area, and P is the wetted perimeter, see figure 4.1.

• rotation

Rotation of the component (in degrees), which will be used to construct displaced mesh within
the code. This is related how SAM internally builds and handles meshes. The default value of
this input parameter is 0, and in most cases, it is safe to leave it unspecified.

• end_elems_refinement

Number of refined elements for the end elements at the begin and end of this component. The
default value is 1, and therefore no refinement. Several examples are shown in figure 4.2 to
illustrate how end_elems_refinement works.

(a) n_elemes=5, end_elems_refinement = 1 (default)

(b) n_elemes=5, end_elems_refinement = 2

(c) n_elemes=5, end_elems_refinement = 3

Figure 4.2: PBOneDFluidComponent with end element refinements.

• offset

25

This parameter accepts an offset, in (dx, dy, dz), from its origin point, i.e., position, such that
the true origin point of the flow channel becomes (origin + offset). Its default value is (0, 0, 0),
meaning no offset at all. This parameter will be depreciated as SAM moves into the real space,
instead of the displayed mesh system it is currently using.

Input parameters related to equation of state, and local initial conditions are given as follows:

• eos (required)

The name of equation of state to be used in this component.

• initial_P, initial_V, and initial_T

Local initial condition for pressure, fluid velocity, and temperature, respectively. If specified,
these values will override those specified in the global parameter list, and will be used to initialize
pressure, fluid velocity, and temperature of this component. If not specified, those global initial
values will be used.

• initial_PS

Local initial conditions for passive scalars. If specified, they override values specified in the global
parameter list. If not specified, the global initial values will be used.

The following input parameters are related to how wall frictional coefficients will be calculated
in the fluid component,

• f

A user-specified constant wall frictional coefficient. If not provided, the wall frictional coeffi-
cient will be automatically calculated within the code, see section 4.3 of SAM Theory Manual
[1]. Whenever provided, this input parameter will shadow all other wall-friction-related input
parameters, such as, WF_user_option, i.e., they will all simply be ignored.

• roughness

Wall roughness. Some wall friction correlations, e.g., the Churchill correlation, require the wall
roughness to compute the frictional coefficient. The default value is 0 m.

• WF_geometry_type

Geometry type for SAM to select appropriate wall friction correlations. Currently, there are
four types of geometries for selection: ‘Pipe’ (default), ‘WireWrap’, ‘SquareLattice’, and ‘Plate’,
among which, ‘WireWrap’ is typical for sodium fast reactor designs, and ‘SquareLattice’ is typi-
cal for light water reactor designs.

• WF_user_option

Users can also directly specify wall friction correlations to be used to compute the frictional
coefficient, however, it should be noted that some correlations only work with certain geometry
type, WF_geometry_type.

The available options for this parameters are: ‘Default’, ‘BlasiusMcAdams’, ‘ZigrangSylvester’,
‘Churchill’, ‘ChengTodreas’, and ‘User’.

26

D

Pitch (p)A

(a) Square-lattice fuel bundle

A

D

Pitch (p)

(b) Hexagonal-lattice fuel bundle

Figure 4.3: Fuel bundles in (a) square-lattice, typically seen in light water reactor designs; and (b)
hexagonal-lattice, typically seen in sodium fast reactor designs.

First, if the ‘User’ option is selected, SAM will compute the wall frictional coefficient from the
following Reynolds number-dependent correlation:

f = A+B×ReC

and SAM is also expecting an additional input parameter, User_defined_WF_parameters, in which
the user-specified constants are given as ‘A B C’. This user-specified correlation is to be used in
both the laminar and turbulence flow regimes.

For options other than ‘User’, ‘Default’ and ‘BlasiusMcAdams’ are effectively identical: for lam-
inar flow, the Darcy’s model will be used, and for turbulent flow, the Blasius correlation is used
for Reynolds number smaller than 3× 104, and the McAdams correlation for Reynolds number
larger than 3×104.

The ‘Churchill’ option will use the Churchill model for wall friction coefficient in both the laminar
and turbulent flow regimes.

When ‘ZigrangSylvester’ option is selected, the Zigrang-Sylvester correlation will be used for the
turbulent flow regime, while for the laminar flow, the Darcy’s model will be used.

When ‘ChengTodreas’ option is selected, the Cheng-Todreas correlation will be used for both
the laminar and turbulent flow regimes. It is also the default option when ‘WireWrap’ type of
geometry is specified, i.e., WF_geometry_type = WireWrap.

Users are referred to section 4.3 of the SAM Theory Manual [1] for more details of the wall
friction correlations.

• User_defined_WF_parameters

As discussed in WF_user_option, when WF_user_option = User, this input parameter accepts a
set of three values for ‘A B C’ to compute use-provided wall friction factor. If WF_user_option =

User, this input parameter is expected from user input. The default values are ‘0 0 0’.

• PoD

This parameter defines the pitch (p) to diameter (D) ratio in rod bundles, see figure 4.3. This ratio
is to be used to compute wall friction factor in, for example, the Cheng-Todreas correlation, and
convective heat transfer coefficient in, for example, the Kazimi-Carelli correlation.

• HoD

27

This parameter defines ratio of “wire lead length” (H) to rod diameter (D), see figure 4.4. Cur-
rently, this parameter is only used in the Cheng-Todreas correlation to compute wall friction factor
in the wire-wrapped fuel bundle geometry.

H

Figure 4.4: Typical SFR wire-wrapped rod configuration.

• lam_factor and turb_factor

A user-input shape factor for laminar/turbulent flow friction factor for non-circular flow channels.
Their default values are both 1.0. Basically, they work as multipliers that are multiplied to the
values computed from wall friction correlations other than user-specified constant wall frictional
coefficient f and user-specified Reynolds number-dependent correlation WF_user_option.

• SC_WF

This is the same wall friction coefficient multiplier parameter as defined in the global parameter
list, section 4.1. If specified in this component, it will override the globally defined parameter
locally, i.e., in this component.

The following input parameters are related to wall heat transfer,

• Hw

A user-specified constant wall heat transfer coefficient. If not provided, the wall heat transfer
coefficient will be automatically calculated within the code, see section 4.2 of SAM Theory Man-
ual [1]. Whenever provided, this input parameter will shadow all other wall-heat-transfer-related
input parameters, such as, HTC_user_option, i.e., they will all simply be ignored.

• Ph

This parameter is the heated perimeter. If heat transfer takes place on the entire wetted perimeter,
the heated perimeter is the same as the wetted perimeter, see figure 4.1. For fuel bundles shown

28

in figure 4.3, assuming all fuel rods are heated, the heated perimeters are πD and πD/2 for (a)
square-lattice and (b) hexagonal-lattice fuel bundles, respectively. However, it is not always true
that the heated perimeter is the same as the wetted perimeter. If, for example, one of the rod in
4.3 (a) is unheated, the heated perimeter is 3πD/4, instead of πD, which is the value of wetted
perimeter.

This is an optional input parameter without a default value given. If specified, it will be used to
compute the heat transfer area density, see HT_surface_area_density.

• HT_surface_area_density

This parameter accepts user-specified value for heat transfer surface area density, aw, which is
heat transfer surface area per fluid volume [m2/m3]. In most cases, it is computed as the ratio of
heated perimeter to cross-sectional flow area,

aw =
Ph

A

For a round pipe, as shown in figure 4.1 (a), it is:

aw =
Pheated

A
=

πD
πD2/4

=
4
D

For fuel bundles, as for example shown in figure 4.3 (b), it is:

aw =
Pheated

A
=

3× πD
6

A

Care should be taken when providing this parameter, as it often depends on how input model
is set up. If not specified correctly, often energy imbalance between fluid components and heat
structures would be introduced.

As for user input, this is an optional input parameter without a default value given. If the heated
perimeter, Ph, is specified, heat transfer area density is computed from its definition, aw = Ph/A.
Users can also specify a constant value for aw. If neither heated perimeter nor this parameter is
given, it is automatically assumed that the heated perimeter is the same as the wetted perimeter,
and thus:

aw =
Ph

A
=

P
A
=

4
Dh

in which P is the wetted perimeter.

• HTC_geometry_type

Geometry type for SAM to select appropriate heat transfer coefficient correlations. There are
four types channel geometries available in SAM, “Pipe (default)”, “Bundle”, “Vertical-Plate”,
and “Horizontal-Plate”1.

• HTC_user_option

Similar to wall friction correlation, users can also directly specify correlations to compute heat
transfer coefficient. The available options for this parameters are: ‘Default’, ‘NotterSleicher’,

1Vertical-Plate and Horizontal-Plate have not been treated yet.

29

‘Aoki’, ‘ChengTak’, ‘Mikityuk’, ‘ModifiedSchad’,‘GraberRieger’, ‘McAdams’, ‘ChurchillChu’,
‘GaddisGnielinski’, ‘UserForced’ and ‘UserNatural’.

If this input parameter is not specified, SAM goes to ‘default’ options to select appropriate heat
transfer coefficient correlations depending on combination of heat transfer geometry, fluid type
(liquid metal or not), and flow condition (laminar or turbulent). For pipe geometry, the default
correlation for liquid metal (Pr < 0.1) is the Seban-Shimazaki correlation (see section 4.2 of SAM
Theory Manual [1]); for fluids other than liquid metal, SAM picks the largest value among those
computed from the Dittus-Boelter correlation, the Churchill-Chu correlation, and the correlation
for forced laminar flow (Nu = 4.36). For fuel bundle geometry, the default correlation for liquid
metal is the same as used for pipe geometry. For non-liquid metal fluids, SAM picks the largest
value among those computed from the Inayatov model (modified Dittus-Boelter correlation for
fuel bundle geometry), the Churchill-Chu correlation, and the correlation for forced laminar flow
(Nu = 4.36).

For pipe geometry, users can also select one of the following correlations, ‘NotterSleicher’, ‘Aoki’
or ‘ChengTak’ for liquid metal, or one from ‘McAdams’ and ‘ChurchillChu’ for non-liquid metal
fluids. For fuel bundle geometry, available options are ‘Mikityuk’, ‘ModifiedSchad’, and ‘Graber-
Rieger’ for liquid metal; and ‘McAdams’, ‘ChurchillChu’, and ‘GaddisGnielinski’ for non-liquid
metal fluids.

SAM also allows users to specify user-defined correlations. Users could select the ‘UserForced’
option (for forced convection), and then specify a set of 7 numbers, i.e.,

[Nu0,a,b,c,d,e, f]

in the User_defined_HTC_parameters input parameter, which will be used to compute the Nusselt
number in the form of:

Nu = Nu0 +a
(

Reb + c
)

Prd (1+ eRe f)0.1

Users could also select the ‘UserNatural’ option (for natural convection), and then specify a set
of 3 numbers in the User_defined_HTC_parameters input parameter,

[Nu0,a,b]

which will be used to compute the Nusselt number in the form of:

Nu = Nu0 +aRab

For heat transfer coefficients, users are referred to SAM theory manual [1] for more details.

• User_defined_HTC_parameters

This input parameter expects either a set of 7 numbers when HTC_user_option = UserForced, or
a set of 3 numbers when HTC_user_option = UserNatural (see the previous item). The default
values are ‘0 0 0 0 0 0 0’.

• SC_HTC

This is the same heat transfer coefficient multiplier parameter as defined in the global parameter
list, section 4.1. If specified in this component, it will override the globally defined parameter
locally, i.e., in this component.

30

Input parameters related to reactivity feedback model are given as follows:

• coolant_density_reactivity_feedback

If specified true, this input parameter enables coolant density reactivity feedback. By default, it is
false.

• n_layers_coolant

This parameter specifies the number of layers of coolant in the flow channel. In combina-
tion of coolant_reactivity_coefficients or coolant_reactivity_coefficients_fn, the average
coolant density in each of these layers will be used to compute the total reactivity feedback in this
flow channel. If not specified, it takes the value of number of elements, i.e., n_elems.

• coolant_reactivity_coefficients

This parameter specifies a list of coolant reactivity coefficients. If there is only one value in this
list, this value will be used in all layers of coolant to compute total reactivity feedback. Otherwise,
the total number of values in this list should be equal to number of layers, i.e., n_layers_coolant
(if specified) or n_elems.

• coolant_reactivity_coefficients_fn

The parameter specifies a function (name) to be used to compute coolant reactivity coefficients.
The function should be spatially distributed along the channel’s axial direction. The reactivity
coefficient will be sampled in the middle point of each layer of coolant.

All other input parameters are discussed as follows:

• tao_supg

An optional input parameter to accept user-specified SUPG stabilization parameter, τSUPG. If not
specified, τSUPG is automatically computed within the code. It is not recommended to specify this
parameter.

• tao_pspg

An optional input parameter to accept user-specified PSPG stabilization parameter, τPSPG. If not
specified, τPSPG is automatically computed within the code. It is not recommended to specify this
parameter.

• scaling_velocity

An optional input parameter to accept user-specified reference velocity (magnitude) to compute
PSPG stabilization parameter, τPSPG. If not specified, SAM automatically picks appropriate ve-
locity magnitude to compute τPSPG. It is not recommended to specify this parameter.

• fluid_conduction

This input parameter overrides the one specified in the global parameter list, which specifies if
axial heat conduction effect of the fluid should be included in the fluid energy equation.

31

• heat_source

This input parameter specifies a direct volumetric heating source to the fluid. A number can be
simply specified to assign a constant value as the volumetric heating source. A function name,
which must have been given in the [Function] input block, can also be given to this input param-
eter, so the volumetric heating source will be calculated from this given function.

• scalar_source

This input parameter specifies a list of volumetric sources to the passive scalar variables. Similar
to heat_source, both numbers and function names are acceptable options. In addition, numbers
and function names could be mixed in the same list.

• axial_mixing

This input parameter specifies if the one-dimensional axial mixing model should be activated.
The default value is false, i.e., axial mixing model is not activated.

• inlet_area_ratio

This input parameter specifies the ratio of volume area to inlet (jet) area for the one-dimensional
axial mixing model. The default value is 1.0.

• Cgv

This input parameter specifies the mixing coefficient due to velocity and geometry effects for the
one-dimensional axial mixing model. The default value is half of the inlet_area_ratio value.

• Cgb

This input parameter specifies the mixing coefficient due to buoyancy and geometry effects for
the one-dimensional axial mixing model. The default value is 1.0.

• input_parameters

This input parameter is designed to allow SAM input components share common features. For
example, in a flow loop consisting of many pipes of the same type, this input parameter allows
that these common features (e.g., flow area, hydraulic diameter, etc.) are to be inputted for only
once. The details are provided in section 4.5.

An example input block is given as follows:

[Components]
......
[./ pipe1]

type = PBOneDFluidComponent
eos = eos # The equation -of-state
position = '0 0 0' # The origin of this component
orientation = '0 0 1' # The orientation of the component
A = 0.01 # Area of the One -D fluid component
heat_source = 0 # Volumetric heat source
f = 0.01 # Specified friction coefficient
Dh = 0.01 # Equivalent hydraulic diameter
length = 1 # Length of the component
n_elems = 100 # Number of elements used in discretization

[../]
[]

32

4.3.2 HeatStructure

HeatStructure is the most basic solid structure component in SAM. It represents a unit one-D
or two-D component in Cartesian or cylindrical coordinates to simulate the heat conduction in solid
structures. The geometry parameters such as the thickness and length are provided in the input
file. Temperature-dependent solid material properties can be provided in tabular or functional form
user-supplied data. Internal volumetric heating can be specified by the user input. Input parameters
of HeatStructure is given as follows:

[./ HeatStructure]
Ts_init = (no_default) # Initial temperature
axial_offset = 0 # Axial offset for cylindrical heat structures
depth_plate = (no_default) # depth of plate in case of plate geometry.

will be used to calculate the volume.
dim_hs = 2 # Dimension of the geometry (1 = 1D, 2 = 2D)
elem_number_axial = 1 # Number of axial elements of heat structure
elem_number_radial = (required) # Number of radial elements of heat structure
end_elems_refinement = 1 # number of element for the end element

in this Component
heat_source_solid = 0 # heat source in solid
hs_names = (no_default) # User given heat structure names
hs_power = (no_default) # total power in the heat structure.
hs_power_shape_fn = (no_default) # axial power shape of the heat structure.
hs_type = plate # Geometry type of the heat structure
input_parameters = (no_default) # Name of the ComponentInputParameters user object
length = (required) # Length of the heat structure
material_hs = (required) # Name of the material used in the heat structure
offset = '0 0 0' # Offset of the origin for mesh generation
orientation = '0 0 1' # Orientation vector of the component
position = '0 0 0' # Origin (start) of the component
power_fraction = (no_default) # fraction of total power goes into different blocks.
radius_i = (no_default) # the radius of the inner wall of the heat

structure , needed when the hs is a cylinder
rotation = 0 # Rotation of the component (in degrees)
width_of_hs = (required) # Width of heat structure

[../]

Each of these input parameters are discussed as follows:

• position, orientation, rotation, offset

These input parameters are defined the same way as discussed in section 4.3.1. Also, see figure
4.5 for reference.

• dim_hs

It specifies how the heat structure is modeled, either in one-dimensional (dim_hs = 1) or two-
dimensional (dim_hs = 2). The default and recommended value is 2, i.e., two-dimensional.

• Ts_init

The initial temperature for the heat structure. If not specified, it seeks the global initial temperature
(see global_init_T in section 4.1) as the initial temperature.

• hs_type

Geometry type of the heat structure, which can be either of ‘plate’ (default) or ‘cylinder’ type.
Note that this input parameter is case sensitive, e.g., ‘Plate’ is not equivalent to ‘plate’. An
example 2D plate type of heat structure is shown in figure 4.5.

33

δ2δ1

depth

length

Position (x0,y0,z0)

Orientation (dx,dy,dz)

Figure 4.5: An example of two-dimensional plate type of heat structure.

• hs_names

This input parameter specifies a vector of names for each layer of heat structure. If not specified,
SAM automatically creates names for each layer of heat structure. For example, in figure 4.5, the
automatically generated names for the two layers would be: <HS name>:hs0 and <HS name>:hs1.

• elem_number_axial

Number of elements in the axial direction (along the length direction, see 4.5) of 2-D heat struc-
ture, or number of intervals between 1-D heat structures if it is 1-D heat structure. The default
value is 1. In figure 4.5, elem_number_axial = 4.

• elem_number_radial (required)

This input parameter accepts a vector of numbers that specify the number(s) of elements to be
used for each layer of heat structure in the wall-thickness direction. As for example, in figure 4.5,
elem_number_radial = ‘3 4’.

• width_of_hs (required)

This input parameter specifies a vector of thickness for the layer(s) of heat structure. The size of
this input vector should be the same as n_wall_elems. As for example, in figure 4.5, width_of_hs
= ‘‘$\delta _1$ $\delta _2$’.

• material_hs (required)

34

This input parameter specifies a vector of heat structure material name(s) for the layer(s) of heat
structure, for example, material_wall = ‘SS-304 Wall-Material-2’.

• heat_source_solid

As one of user-specified heat source input options, this input parameter accepts a constant number
that is used to specify a uniformly distributed constant volumetric heat source (W/m3) in the entire
heat structure. The default value is 0. If more complex heat source input than this simple constant
value is desired, SAM provides other input options, see hs_power.

• hs_power and power_fraction

hs_power specifies the total power, in [W], of the heat structure. If power_fraction is not further
specified, it is assumed that the total power is uniformly distributed on the entire heat structure,
and therefore, the volumetric heat source is calculated as total power divided by total volume of
the heat structure.

In case that power is not uniformly distributed, power_fraction accepts a vector of values that
specifies the fraction of the total power for each layer of heat structure. The size of this vector
has to be the same as the number of layers in the heat structure. For example, in figure 4.5, one
could specify hs_power = 1000 and power_fraction = ‘0.9 0.1’, and thus 90% of the total power
goes to the first layer (to the left), and 10% goes to the second layer (to the right). Volumetric
heat source in each layer of heat structure is then calculated as power in this heat structure layer
divided by the solid volume of this heat structure layer.

• hs_power_shape_fn

This input parameter accepts a function name, which can be a function of time and/or space.
It is important to note that the function value, which could be both temporal and spatial de-
pendent, is multiplied to local volumetric heat source (see previous two items), and there is no
re-normalization of total power.

• depth_plate

This input parameter is only required when hs_power is specified and the heat structure type is
“plate”. It is required to compute the volume of each heat structure layer. For example, in figure
4.5, the volume of the first heat structure layer is calculated as: Length ×δ1× depth.

• radius_i

This input parameter specifies the inner radius of the left-most wall if the heat structure type is
cylinder, see figure 4.7 as an example. The default value is 0, if not specified.

• end_elems_refinement

Number of refinement for the end elements in the beginning and ending of the component (in the
axial direction). The default value is 1. It is only available when the heat structure dimension
is two. It usage is similar to the same input parameter for PBOneDFluidComponent, see section
4.3.1, and it is normally used in pair with PBOneDFluidComponent in PBHeatExchanger (see section
4.3.15).

• axial_offset

Axial offset for cylindrical heat structures

35

• input_parameters (advanced)

This parameter is similar to that of PBOneDFluidComponent, also see section 4.5.

4.3.3 PBPipe

In SAM, PBPipe is directly inherited from PBOneDFluidComponent, with the concept to model
a one-dimensional pipe flow and its pipe wall with one layer (or several layers) of HeatStructure,
as illustrated in figure 4.6. Its input parameters are therefore a superset of input parameters of
PBOneDFluidComponent and those to define wall heat structures.

PBOneDFluidComponent

HeatStructure

Figure 4.6: SAM’s PBPipe component, which consists of a PBOneDFluidComponent to model the
one-dimensional fluid flow and one layer (or several layers) of HeatStructure to model its wall.

The input parameter subset for PBOneDFluidComponent has been discussed in section 4.3.1. In
this section, only the input parameters to define wall heat structures are discussed:

[./ PBPipe]
Input parameters inherited from PBOneDFluidComponent are not listed.

HS_BC_type = Adiabatic # Heat structure boundary condition type
T_amb = 300 # ambient temperature
T_wall = 600 # Fixed Temperature BC at the outer pipe wall surface
Twall_init = (no_default) # Initial wall temperature
dim_wall = 2 # The dimension of the mesh used for the wall:

1 = 1D, 2 = 2D (default).
disp_mode = 1 # 1.0 for +y display , -1.0 for -y display.

More complicated display modes are necessary
h_amb = (no_default) # convective heat transfer coefficient with ambient
heat_source_solid = (no_default) # heat source in solid
hs_type = plate # Geometry type of the heat structure
material_wall = (required) # Name of the material used in the wall
n_wall_elems = (required) # number of elements in the wall
name_comp_right = (no_default) # The name of the right liquid volume

connected to the heat structure
qs_wall = (no_default) # Heat flux at the outer pipe wall surface
radius_i = (no_default) # the radius of the inner pipe wall
wall_thickness = (required) # Thickness of the wall
input_parameters = (no_default) # Name of the ComponentInputParameters

user object
[../]

36

The detailed descriptions of these heat structure-related input parameters are given as follows:

• Twall_init

The initial wall temperature for heat structures. If not specified, it first seeks local initial fluid
temperature (see initial_T in section 4.3.1) as initial wall temperature; if local initial fluid tem-
perature is neither given, it then seeks the global initial temperature (see global_init_T in section
4.1) as the initial wall temperature.

• dim_wall

The same as dim_hs in section 4.3.2, it specifies how the wall heat structures are modeled, ei-
ther in one-dimensional (dim_wall = 1) or two-dimensional (dim_wall = 2). The default and
recommended value is 2, i.e., two-dimensional.

• hs_type

Geometry type of the heat structure, which can be either of ‘plate’ (default) or ‘cylinder’ type.
Note that this input parameter is case insensitive, e.g., ‘Plate’ is equivalent to ‘plate’. This is the
same as hs_type in section 4.3.2.

• radius_i

This input parameter specifies the inner radius of the pipe wall, if a cylinder type of heat struc-
ture(s) is used to model pipe wall, see figure 4.7. If not specified, it takes half of the hydraulic
diameter value, i.e., Dh/2.

• n_wall_elems (required)

This input parameter accepts a vector of numbers that specify the number(s) of elements to be
used for each layer of heat structure in the wall-thickness direction. As for example, in figure 4.7,
n_wall_elems = ‘2 3’. This parameter is the same as elem_number_radial in section 4.3.2.

ri

Figure 4.7: An input example of PBPipe with two layers of heat structures to model its wall. For
example, it could represent a layer of metal wall and an extra layer of thermal insulation material.

• wall_thickness (required)

This input parameter specifies a vector of wall thickness for the layer(s) of wall heat structure.
The size of this input vector should be the same as n_wall_elems. This parameter is the same as
width_of_hs in section 4.3.2.

37

• material_wall (required)

This input parameter specifies a vector of heat structure material name(s) for the layer(s) of wall
heat structure, for example, material_wall = ‘SS-304 Wall-Material-2’. For obvious reason,
the size of this input vector should be the same as n_wall_elems. This parameter is the same as
material_hs in section 4.3.2.

• heat_source_solid

This input parameter specifies a vector of volumetric heat source (in numbers) of wall heat struc-
tures. The vector size has to be the same as n_wall_elems.

• HS_BC_type

This input parameter specifies the boundary condition type for the pipe outer wall surface. Avail-
able options for this parameter are: “Adiabatic (default)”, “Temperature”, “Convective”, and
“Coupled”.

“Adiabatic”, as its name suggests, sets an adiabatic boundary condition for the pipe outer wall
surface.

“Temperature” sets a Dirichlet temperature boundary condition for the pipe outer wall surface.
When this boundary condition type is specified, the Dirichlet temperature boundary condition
value is also expected from the input file (see T_wall).

“Convective” sets a convective boundary condition to model heat transfer between the pipe outer
wall surface and the ambient. Additional input parameters are to be supplied for “Convective”
type of boundary condition. This boundary condition type could be supplemented by another two
input parameters: user-specified ambient temperature (see T_amb) and user-specified heat transfer
coefficient (see h_amb). In addition, a user-specified wall heat flux could be directly given on the
pipe outer wall surface (see qs_wall).

“Coupled” sets a conjugate heat transfer boundary condition for the pipe outer wall surface. In
this case, the volume component, with which the outer surface transfers heat, has to be specified
in the name_comp_right.

• T_wall

Pipe outer wall surface temperature in case that “Temperature” is specified for HS_BC_type. It has
to be a number, and the default value for this input parameter is 600 K.

• T_amb and h_amb

When “Convective” is specified for HS_BC_type, T_amb accepts user-specified ambient temper-
ature, and h_amb accepts user-specified heat transfer coefficient. Both input parameters accept
either a number or a function name. The default value for T_amb is 300 K.

• qs_wall

When “Convective” is specified for HS_BC_type, besides T_amb and h_amb, a user-specified wall
heat flux could be directly given to the pipe outer wall surface. It can be either a number of a
function name.

• input_parameters

See section 4.5.

38

(a)

δ2δ1

(b)

Figure 4.8: PBCoreChannel component (a) SAM’s PBCoreChannel component simulates the aver-
age coolant flow in rod bundles and heat conduction inside a fuel rod; and (b) An example mesh
used in the PBCoreChannel component, 2-D mesh for heat structure and 1-D mesh for fluid flow.

4.3.4 PBCoreChannel

PBCoreChannel simulates the average coolant flow in rod bundles and heat conduction inside a
fuel rod, as well as the convective heat transfer between the coolant and the fuel rod. It is com-
posed of a PBOneDFluidComponent and a HeatStructure. This is also the so-called “Single-Channel”
approach to model the fuel assembly. Axial power profiles and the power fractions of total reactor
power can be specified for the component. If an outer structure (duct wall) is added to PBCoreChan-
nel, it becomes PBDuctedCoreChannel, which simulates the ducted fuel assemblies as those in SFRs.

When more complex PBCoreChannel is needed to model the reactor fuel assemblies having
different axial regions, FuelAssembly or DuctedFuelAssembly are provided in SAM.

From thermal-hydraulics point of view, PBCoreChannel is quite similar to PBPipe, both of which
consist of a 1-D fluid flow model and a heat structure, although PBPipe assumes heat structures to
be pipe walls, while PBCoreChannel assumes heat structures to be fuel rods, figure 4.8. The major
difference between these two components is that PBCoreChannel has a built-in interface to interact
with ReactorPower component. It receives power as heat source from the ReactorPower component,
and also provides the capability to model reactivity feedback. The three types of reactivity feedback
mechanisms include fuel’s Doppler effect, fuel expansion effect, and coolant density effect (via
PBOneDFluidComponent).

The full list of input parameters are given in the following table. Most of them are the same as
those for PBOneDFluidComponent (section 4.3.1) or HeatStructure (section 4.3.2).

[./ PBCoreChannel]
A = (required) # See PBOneDFluidComponent
Dh = (required) # See PBOneDFluidComponent

39

HTC_geometry_type = Pipe # See PBOneDFluidComponent
HTC_user_option = Default # See PBOneDFluidComponent
HoD = 1 # See PBOneDFluidComponent
Hw = (no_default) # See PBOneDFluidComponent
Ph = (no_default) # See PBOneDFluidComponent
PoD = 1 # See PBOneDFluidComponent
SC_HTC = 1 # See PBOneDFluidComponent
SC_WF = 1 # See PBOneDFluidComponent
end_elems_refinement = 1 # See PBOneDFluidComponent
eos = (required) # See PBOneDFluidComponent
f = (no_default) # See PBOneDFluidComponent
fluid_conduction = (no_default) # See PBOneDFluidComponent
initial_P = (no_default) # See PBOneDFluidComponent
initial_PS = (no_default) # See PBOneDFluidComponent
initial_T = (no_default) # See PBOneDFluidComponent
initial_V = (no_default) # See PBOneDFluidComponent
n_elems = (required) # See PBOneDFluidComponent
WF_geometry_type = Pipe # See PBOneDFluidComponent
WF_user_option = Default # See PBOneDFluidComponent
lam_factor = 1 # See PBOneDFluidComponent
length = (required) # See PBOneDFluidComponent
orientation = '0 0 1' # See PBOneDFluidComponent
position = '0 0 0' # See PBOneDFluidComponent
rotation = 0 # See PBOneDFluidComponent
roughness = 0 # See PBOneDFluidComponent
scalar_source = (no_default) # See PBOneDFluidComponent
scaling_velocity = (no_default) # See PBOneDFluidComponent
tao_pspg = (no_default) # See PBOneDFluidComponent
tao_supg = (no_default) # See PBOneDFluidComponent
turb_factor = 1 # See PBOneDFluidComponent
HT_surface_area_density = (no_default) # See PBOneDFluidComponent
User_defined_HTC_parameters = '0 0 0 0 0 0 0' # See PBOneDFluidComponent
User_defined_WF_parameters = '0 0 0' # See PBOneDFluidComponent
n_layers_coolant = (no_default) # See PBOneDFluidComponent
coolant_density_reactivity_feedback = 0 # See PBOneDFluidComponent
coolant_reactivity_coefficients = (no_default) # See PBOneDFluidComponent
coolant_reactivity_coefficients_fn = (no_default) # See PBOneDFluidComponent

Ts_init = (required) # See HeatStructure
dim_hs = 1 # See HeatStructure
heat_source = 0. # See HeatStructure
material_hs = (required) # See HeatStructure
power_fraction = (no_default) # See HeatStructure
power_shape_function = (no_default) # See HeatStructure
width_of_hs = (required) # See HeatStructure

assembly_type = RodBundle # Fuel assembly geometry type
coupled_axial_expansion = 0 # If using the displacement from

external thermo -mechanical module.
depth = 1 # The dimension of plate fuel in the

third direction , m
elem_number_of_hs = (required) # Number of elements of each heat structure
fuel_type = plate # Geometry type of the fuel
mesh_disp_gap = 0.005 # Mesh offset when creating heat structure

meshes
n_assemblies = 1 # number of represented assemblies
n_heatstruct = (required) # Number of heat structures
name_of_hs = (required) # User given heat structure names
n_rods = (no_default) # number of fuel rods per fuel assembly

eutectic_condition_expansion = 1 # If using the free expansion
model.

fuel_axial_expansion_reactivity_feedback = 0 # Enable fuel axial reactivity
feedback.

40

liquid_fuel = 0 # Enable fuel axial expansion
reactivity feedback model
for liquid fuel

fuel_axial_expansion_reactivity_fn = (no_default) # Axial reactivity function name.
fuel_doppler_reactivity_coefficients = (no_default) # Fuel Doppler reactivity

coefficients
(delta_k / k per kg)

fuel_doppler_reactivity_coefficients_fn = (no_default) # Fuel Doppler reactivity
coefficients
(delta_k / k per kg)

fuel_doppler_reactivity_feedback = 0 # Enable fuel Doppler reactivity
feedback.

n_layers_axial_expansion = (no_default) # Number of layers for fuel axial
expansion reactivity feedback.

n_layers_doppler = (no_default) # Number of layers in the fuel
rod for fuel Doppler reactivity
feedback.

input_parameters = (no_default) # Name of the ComponentInputParameters
user object

[../]

• n_assemblies

Number of assemblies grouped together that is represented by this PBCoreChannel component.

• elem_number_of_hs (required)

Number of radial elements of heat structure. See elem_number_radial in section 4.3.2.

• Ts_init (required)

The initial temperature for the heat structure, same as Ts_init in section 4.3.2, however this is a
required input parameter for PBCoreChannel component.

• n_heatstruct (required)

Number of heat structures. In some cases that no heat structures should be modeled in this com-
ponent, specify zero to this parameter, and at the same time, specify “None” to fuel_type. When
heat structure is modeled, a company component, ReactorPower is expected in the input file,
which provides power to this component and accepts reactivity feedback from this component
(optional).

• name_of_hs (required)

This input parameter is similar to hs_names of HeatStructure, however, it is a required input
parameter for this component. It accepts a vector of names, which specify the name of each heat
structure of this component.

• dim_hs

The dimension of the mesh used for the heat structure, same as dim_hs in section 4.3.2. However,
the default value here is 1.

• fuel_type

Same as hs_type in section 4.3.2. It can be “None” if no fuel rod is modeled.

41

• depth

The depth of plate type of fuels, the same as depth_plate in section 4.3.2

• end_elems_refinement

It is defined, but not used in this component.

• mesh_disp_gap

This input parameter specifies mesh offset in the y-direction, with respect to the fluid component
mesh, when creating heat structure meshes. The default value for this parameter is 0.005 [m].

• n_rods

Number of fuel rods per fuel assembly. This parameter is only required when assembly type is
“Block-Channel”.

• fluid_conduction

It is defined, but not used in this component.

• assembly_type

This parameter specifies the assembly type of this PBCoreChannel component. Available options
include “RodBundle” (default), “Plates”, and “Block-Channel”. If “Block-Channel” is specified,
an additional input parameter n_rods is expected.

• fuel_axial_expansion_reactivity_feedback

This parameter specifies if reactivity feedback due to fuel axial expansion should be considered.
By default, it is False (not considered). When it is specified True, additional input parameters are
expected from user input (see discussion that follows).

• liquid_fuel

This parameter enables the liquid fuel axial expansion reactivity feedback model. For the liquid
fuel axial expansion reactivity, the fuel is assumed to expands freely in axial direction. Cau-
tion: this model works on the condition that user input fuel density is a function of fuel tem-
perature. The density change in each axial layer contributes to the reactivity. Tips: for fuel
beyond the fixed axial mesh, the user is expected to provide the fuel worth value through the
fuel_axial_expansion_reactivity_fn.

• n_layers_axial_expansion

When fuel_axial_expansion_reactivity_feedback = True, this parameter specifies the number
of fuel layers in the axial direction (Nlayer). The length of each of these layers is assumed to be
the same, and thus it is equal to total fuel length divided by Nlayer. If not specified, this parameter
takes the number of fluid elements (the same as the number of heat structure elements in the axial
direction) as its default value. Averaged axial displacement in fuel rod will be calculated in each
of these layers for the component to compute the overall reactivity feedback due to fuel axial
expansion.

42

• fuel_axial_expansion_reactivity_fn

When fuel_axial_expansion_reactivity_feedback = True, this parameter specifies the name of
a function that will be used to compute the overall reactivity feedback due to fuel axial expansion.

• coupled_axial_expansion

When fuel_axial_expansion_reactivity_feedback = True, this parameter specifies that, if True,
fuel axial expansion is computed from codes external to SAM; and if False (default), it will be
calculated internally using SAM’s built-in models.

• eutectic_condition_expansion

When fuel_axial_expansion_reactivity_feedback = True, this parameter specifies that, if True
(default), eutectic conditions are assumed for fuel and clad expansions; and if False, fuel and clad
are assumed to expand freely.

• fuel_doppler_reactivity_feedback

This parameter specifies if reactivity feedback due to fuel’s Doppler effect should be considered.
By default, it is False (not considered). When it is specified True, additional input parameters are
expected from user input (see discussion that follows).

• fuel_doppler_reactivity_coefficients_fn

When fuel_doppler_reactivity_feedback = True, this parameter accepts the name of a function
that computes fuel’s Doppler effect coefficients. The function can be spatial-dependent only. The
value is evaluated in the middle of each fuel layer, see n_layers_doppler.

• fuel_doppler_reactivity_coefficients

Instead of using a function, it is also possible to directly specify a vector Doppler effect reactivity
coefficients for each fuel layer. This vector could contain only single value, such that it will
be used for all fuel layers. Otherwise, the number of values in this vector shall be the same as
n_layers_doppler.

• n_layers_doppler

Similar to n_layers_axial_expansion, this input parameter specifies the number of fuel layers in
the axial direction to compute fuel’s Doppler effect, only needed when fuel_doppler_reactivity

_feedback = True.

• input_parameters

See section 4.5.

4.3.5 PBDuctedCoreChannel

PBDuctedCoreChannel is intended to model a fuel subassembly, which consists of a fuel bundle
modeled as a PBCoreChannel and its duct wall modeled as an additional heat structure. Such
a ducted fuel subassembly concept is typical in some sodium fast reactor designs. From user-
input point of view, PBDuctedCoreChannel inherits all input parameters from the PBCoreChannel
component (see 4.3.4), and requires additional input parameters to describe the duct wall, which are
listed as follows:

43

[./ PBDuctedCoreChannel]
Input parameters same as those in PBCoreChannel are not listed.

name_of_duct = duct # User given duct wall heat structure names
dim_duct = 2 # Dimension of the geometry (1 = 1D, 2 = 2D)
Tduct_init = (no_default) # Initial duct wall temperature
duct_thickness = (required) # Thickness of the duct wall
n_duct_elems = (required) # number of elements in the duct wall
material_duct = (required) # Name of the material used in the duct wall
disp_mode = 1 # 1.0 for +y display , -1.0 for -y display.

More complicated display modes are necessary
name_of_bpc = (no_default) # Adjacent BypassChannel names for the CoreChannel
HT_surface_area_density_duct = (required) # duct side heating surface density

[../]

• name_of_duct

This parameter specifies the name of the duct wall. If not specified, the default value is “duct”.

• dim_duct

Similar to dim_hs of HeatStructure, it specifies how duct wall heat structure is modeled, either
in one-dimensional (1) or two-dimensional (2). The default and recommended value is 2, i.e.,
two-dimensional.

• Tduct_init

This parameter specifies the initial temperature for the duct wall. If not specified, it takes the
global initial temperature, global_init_T (see section 4.1), as the initial duct wall temperature.

• duct_thickness (required)

The thickness of the duct wall.

• n_duct_elems (required)

Number of elements to model the duct wall in its thickness direction.

• material_duct (required)

This parameter specifies the duct wall material.

• HT_surface_area_density_duct (required)

This parameter specifies the heat transfer surface area density of the duct wall with respect to the
CoreChannel.

• disp_mode

To be added.

• name_of_bpc

This parameter specifies the name of BypassChannel adjacent for the CoreChannel.

44

4.3.6 PBBypassChannel

PBBypassChannel is just a PBOneDFluidComponent component with additional physics mod-
els. It is designed to model the bypass flow in the gaps between fuel assemblies. It includes the
modeling of conjugate heat transfer with the neighboring fuel assembly duct walls. It can also
model the direct coolant heating as a fraction of the total reactor power and using the same or
different axial power shapes.

From user-input point of view, it inherits all input parameters from PBOneDFluidComponent,
and requires additional input parameters to describe its neighboring PBDuctedCoreChannels and
direct coolant heating.

[./ PBBypassChannel]
Input parameters same as those in PBOneDFluidComponent are not listed.

name_of_cc = (no_default) # Adjacent CoreChannel names
power_fraction = (no_default) # fraction of reactor power goes into

this bypass channel
power_shape_function = (no_default) # axial power shape of the channel
HT_surface_area_density_second = (no_default) # Heating surface density

[../]

• name_of_cc

This input parameter specifies the names of the two adjacent PBDuctedCoreChannels.

• power_fraction

This input parameter specifies the fraction of reactor power directly goes into this bypass channel.
When specified, a ReactorPower component is also expected in the input file that provides the
computation of reactor power.

• power_shape_function

This input parameter accepts a function name, which can be a function of time and/or space. It is
important to note that the function value, which could be both temporal and spatial dependent, is
multiplied to local volumetric heat source, and there is no re-normalization of total power.

• HT_surface_area_density_second

This input parameter is used in parallel wit HT_surface_area_density inherited from PBOneD-
FluidComponent. This parameter specifies aw for the second PBDuctedCoreChannels in the list,
while HT_surface_area_density specifies aw for the first one.

4.3.7 PBMoltenSaltChannel

PBMoltenSaltChannel is a component intended to model the core behavior of molten-salt re-
actor designs. It is a PBOneDFluidComponent component with additional physics models that
account for heating due to reactor power and decay curve.

From user-input point of view, it inherits all input parameters from PBOneDFluidComponent,
and requires additional input parameters for the extra physics models.

[./ PBMoltenSaltChannel]
Input parameters same as those in PBOneDFluidComponent are not listed.

45

power_fraction = (no_default) # fraction of reactor power goes into
this molten salt channel

power_product_name = (no_default) # scalar power product source names
power_shape_function = (no_default) # axial power shape of the channel
beta = (no_default) # scalar power product fractions
decay_curve_power_frac = (no_default) # Power fractions for decay heat curve
decay_heat_curve_names = (no_default) # Decay heat curve names

[../]

• power_fraction

This input parameter specifies the fraction of reactor power directly goes into this bypass channel.
When specified, a ReactorPower component is also expected in the input file that provides the
computation of reactor power. If not specified, it is assumed there is no direct heating to this
PBMoltenSaltChannel.

• power_shape_function

This input parameter accepts a function name, which can be a function of time and/or space. It
is only needed when power_fraction is specified. It is important to note that the function value,
which could be both temporal and spatial dependent, is multiplied to local volumetric heat source,
and there is no re-normalization of total power. If not specified, SAM takes a default power shape
function, which is defined as,

f =
π

2
sin
(

πx
L

)
where x is the axial location, and L is the channel length.

• power_product_name

This input parameter specifies a list of passive scalars that this PBMoltenSaltChannel component
will model as its fission products. These passive scalars should have been defined in the global
parameter, passive_scalar (see section 4.1). The product faction of each scalar is specified in
beta. In addition this user-specified list of passive scalars, PBMoltenSaltChannel also has built-in
decay curves for several isotopes, see decay_heat_curve_names.

• beta

This parameter specifies the scalar power product fractions.

• decay_heat_curve_names

This component also provides user input to choose built-in decay curves for several isotopes,
including “U235T”, “PU239T”, “U238F”, “PU241T”, and “TEST235”.

4.3.8 FuelAssembly

FuelAssembly or DuctedFuelAssembly (see section 4.3.9) model the reactor fuel assemblies com-
posed of multiple PBCoreChannels or PBDuctedCoreChannels, representing different axial regions of
a fuel assembly including the active core, gas plenum, lower and upper reflector, lower and upper
shield, etc. The junction components (PBSingleJunction) are also auto-created in FuelAssembly or

46

DuctedFuelAssembly to model the connection among the fluid parts of PBCoreChannel or PBDucted-
CoreChannel.

The complete list of input parameters of FuelAssembly is give as,

[./ FuelAssembly]
A = (required) # Areas of the OneDComp
Dh = (required) # Hydraulic diameter
HTC_geometry_type = Pipe # Heat transfer geometry type
HTC_user_option = Default # User option heat transfer correlations
HT_surface_area_density = (required) # Heating surface density
Hw = (no_default) # Convective heat transfer coefficient
PoD = (no_default) # pitch to diameter ratio for parallel bundle

heat transfer
SC_HTC = (no_default) # Sensitivity coefficient for HTC , multiplicative
Ts_init = (required) # Initial solid temperature
dim_hs = 2 # See PBCoreChannel
elem_number_of_hs = (required) # Number of elements of each heat structure
eos = (required) # See PBCoreChannel
f = (no_default) # friction
hs_type = (no_default) # Geometry type of the fuel
initial_P = (no_default) # Initial pressure in the OneDComp
initial_T = (no_default) # Initial temperature in the OneDComp
initial_V = (no_default) # Initial velocity in the OneDComp
junction_nodalTbc = 1 # if use nodalTbc for junctions
lam_factor = (no_default) # a user -input shape factor for laminar friction

factor for non -circular flow channels
length = (required) # Length of the OneDComp
material_hs = (required) # Name of the materials used in the heat

structures
n_assemblies = 1 # See PBCoreChannel
n_elems = (required) # number of element in this OneDComp
n_heatstruct = (required) # Number of heat structures
n_zones = (required) # number of zones
name_of_hs = (required) # User given heat structure names
orientation = '0 0 1' # See PBCoreChannel
plate_depth = (no_default) # The dimension of plate fuel in the third

direction , m
position = '0 0 0' # See PBCoreChannel
power_fraction = (no_default) # fraction of reactor power goes into this core

channel
power_shape_function = (no_default) # See PBCoreChannel
rotation = 0 # See PBCoreChannel
roughness = (no_default) # roughness , [m]
scaling_velocity = (no_default) # a user -input global velocity for PSPG scheme
tao_pspg = (no_default) # tao_pspg
tao_supg = (no_default) # tao_supg
turb_factor = (no_default) # a user -input shape factor for turbulent friction

factor for non -circular flow channels
width_of_hs = (required) # Width of each heat structure

[../]

The input parameters of a FuelAssembly are quite similar to those of a PBCoreChannel. How-
ever, as a FuelAssembly consists of multiple PBCoreChannels to represent different axial regions
of a fuel assembly, most of its input parameters require a list of numbers (or strings), instead of a
single number (or string) as in PBCoreChannel. Most of these input parameters could be found in
PBCoreChannel or PBOneDFluidComponent and HeatStructure.

• n_zones (required)

This input parameter specifies number or zones, i.e., number of PBCoreChannels, to be used in
the FuelAssembly component along the axial direction.

47

• A (required)

A list of n zones areas for the n zones PBCoreChannels.

• Dh (required)

A list of n zones hydraulic diameters, Dh, for the n zones PBCoreChannels.

• n_elems (required)

A list of n zones numbers of elements for the one-dimensional flow channel in the axial direction
for the n zones PBCoreChannels.

• HTC_geometry_type

A list of n zones heat transfer geometry types for the n zones PBCoreChannels. For heat transfer
geometry types, see section 4.3.1.

• HTC_user_option

A list of n zones heat transfer user options for the n zones PBCoreChannels. For heat transfer
user options, see section 4.3.1.

• HT_surface_area_density (required)

A list of n zones heat transfer surface densities, aw, for the n zones PBCoreChannels.

• Hw

A list of n zones wall heat transfer coefficients for the n zones PBCoreChannels.

• PoD

A list of n zones pitch-to-diameter ratios for the n zones PBCoreChannels.

• SC_HTC

A list of n zones sensitivity coefficients for heat transfer coefficient for the n zones PBCoreChan-
nels.

• Ts_init (required)

A list of n zones heat structure initial temperatures for the n zones PBCoreChannels.

• dim_hs

The dimension of the mesh used for the heat structure of all PBCoreChannels. It does not require
a list of dimensions.

• f

A list of n zones user-specified wall frictional coefficient for the n zones PBCoreChannels.

• hs_type

A list of n zones heat structure types for the n zones PBCoreChannels.

• initial_P, initial_T, and initial_V

A list of n zones initial pressure (temperature, velocity) for the n zones PBCoreChannels.

48

• junction_nodalTbc

As within the FuelAssembly component, n zones - 1 PBSingleJunctions are automatically created
to connect the n zones PBCoreChannels, this input parameter specifies if ‘nodal Tbc’ is to be used
for these automatically generated PBSingleJunctions. For ‘nodal Tbc’ of PBSingleJunction, see
section 4.3.22.

• lam_factor and turb_factor

A list of n zones user-input shape factors for laminar (turbulent) flow friction factor for non-
circular flow channels for the n zones PBCoreChannels.

• length (required)

A list of n zones lengths for the n zones PBCoreChannels.

• n_heatstruct (required)

A list of n zones number of heat structures for the n zones PBCoreChannels. Sum all these
numbers up, the total number of heat structures, nhs,total , is obtained. For example, in a two-zone
FuelAssembly, if n_heatstruct = ‘2 3’, there are in total 5 heat structures (nhs,total = 5) that will
require use-inputs for their names, widths, materials, number of elements in its width direction,
power fractions, etc. See following discussions.

• elem_number_of_hs (required)

A list of nhs,total numbers of elements for the nhs,total heat structures in the FuelAssembly compo-
nent.

• material_hs (required)

A list of nhs,total names of materials for the nhs,total heat structures in the FuelAssembly compo-
nent.

• power_fraction (required)

A list of nhs,total power fractions that goes to the nhs,total heat structures in the FuelAssembly
component.

• plate_depth

A list of n zones values of the dimension of plate fuel in the third direction for the n zones
PBCoreChannels. Only needed for plate type of fuels. Also, see section 4.3.4.

• roughness

A list of n zones wall roughnesses for the n zones PBCoreChannels.

• scaling_velocity, tao_pspg, and tao_supg

A list of n zones scaling velocities (τPSPG, τSUPG) for the n zones PBCoreChannels. Also, see
section 4.3.4.

49

4.3.9 DuctedFuelAssembly

DuctedFuelAssembly is simply a FuelAssembly (see section 4.3.8) with an outer duct. It inherits
all input parameters from FuelAssembly component, and requires additional input parameters to
describe its outer duct:

[./ DuctedFuelAssembly]
Input parameters same as those in FuelAssembly are not listed.

dim_duct = 2 # Dimension of the geometry (1 = 1D, 2 = 2D)
Tduct_init = (no_default) # Initial duct wall temperature
duct_thickness = (required) # Thickness of the duct wall
elem_number_of_duct = (required) # number of elements in the duct wall
material_duct = (required) # Name of the material used in the duct wall
HT_surface_area_density_duct = (required) # duct side heating surface density

input_parameters = (no_default) # Name of the ComponentInputParameters
user object

[../]

• dim_duct

Similar to dim_hs of HeatStructure, it specifies how duct wall heat structure is modeled, either
in one-dimensional (1) or two-dimensional (2). The default and recommended value is 2, i.e.,
two-dimensional.

• Tduct_init

A list of n zones initial temperatures for the duct wall of the n zones PBDuctedCoreChannels. If
not specified, it takes the global initial temperature, global_init_T (see section 4.1), as the initial
duct wall temperature.

• duct_thickness (required)

A list of n zones duct wall thickness of the n zones PBDuctedCoreChannels.

• elem_number_of_duct (required)

A list of n zones numbers of elements, each of which is to be used to specify the number of
elements in the duct wall for each PBDuctedCoreChannel.

• material_duct (required)

This parameter specifies the duct wall material for all duct walls.

• HT_surface_area_density_duct (required)

A list of n zones heat transfer surface area densities of the duct walls with respect to the PBDuct-
edCoreChannels.

• input_parameters

See section 4.5.

50

4.3.10 MultiChannelRodBundle

To improve the heat transfer between the duct wall and coolant flow, a multi-channel rod bundle
model is developed in SAM to account for the temperature differences between the center region
and the edge region of the coolant channel in a fuel assembly. Similar approach has been proposed
in ENERGY (Yang and Joo, 1999), SAS4A/SASSYS-1 (Fanning 2012), as well as the multi-region
porous medium model reported by Yu et al. (2015). The whole fuel assembly can be divided into
a number of regions, as shown in figure 4.9. It is quite remarkable that the volumetric heat flux
in region 1 is significantly less than that in other regions, based on analytical calculations. Each
inner region is modeled as an average core-channel (i.e., a 1-D coolant channel and an average fuel
pin). The edge region can be modeled as one core-channel or six core-channels to account for the
differences in heat transfer with each side of the duct wall. This zoning strategy is also inspired
from the authors’ previous experiences in the CFD simulations of the triangle-lattice pin bundles.
As shown in the Hu and Yu (2016), large temperature gradient were observed in the coolant region
near the duct wall, but the temperature distribution elsewhere is very uniform except the hot spots
due to the wire-wrap effects.

flat-to-flat distance

fuel pin diameter

Pitch

Figure 4.9: Sketch of the regions in the multi-channel model.

In the SAM multi-channel model, the fluid regions are modeled as separate parallel channels
with the same pressure drop. For simplicity, it is assumed that there are no mass and momentum
exchange between channels. However, the energy exchange is allowed at all axial nodes.

MultiChannelRodBundle assumes that the heat structures are the same for all its automatically

51

generated PBCoreChannels, and thus the same input parameters for heat structure are used for all
PBCoreChannels. Also, note that MultiChannelRodBundle does not model the outer duct wall.

Input parameters of MultiChannelRodBundle are given as follows:

[./ MultiChannelRodBundle]
Ts_init = (required) # See PBCoreChannels , same for all channels
assem_Dft = (required) # The flat -to-flat distance of the assembly
beta = 0 # turbulent mixing parameter
dim_hs = 1 # The dimension of the mesh used for the

heat structure: 1 = 1D(default), 2 = 2D .
elem_number_of_hs = (required) # See PBCoreChannels , same for all channels
eos = (required) # See PBOneDFluidComponent
initial_P = (no_default) # Initial pressure in the OneDComp
initial_T = (no_default) # Initial temperature in the OneDComp
initial_V = (no_default) # Initial velocity in the OneDComp
lam_factor = (no_default) # a user -input shape factor for laminar

friction factor for non -circular flow channels
length = (required) # See PBCoreChannel , same for all channels
material_hs = (required) # See PBCoreChannel , same for all channels
n_channel = (no_default) # Number of CoreChannels
n_elems = (required) # number of axial element
n_heatstruct = (required) # See PBCoreChannels , same for all channels
n_side = (required) # Number of fuel pin rings
n_zones = (required) # Number of zones
name_of_hs = (required) # See PBCoreChannels , same for all channels
orientation = '0 0 1' # See PBOneDFluidComponent
pin_diameter = (required) # The fuel pin diameter
pin_pitch = (required) # The distance between fuel pin centers
position = '0 0 0' # See PBOneDFluidComponent
power_fraction = (no_default) # See PBCoreChannel , same for all channels
power_shape_function = (no_default) # See PBCoreChannel , same for all channels
radial_power_peaking = (no_default) # radial power peaking factors
rotation = 0 # See PBOneDFluidComponent
roughness = (no_default) # roughness , [m]
scaling_velocity = (no_default) # a user -input global velocity for PSPG scheme
tao_pspg = (no_default) # tao_pspg
tao_supg = (no_default) # tao_supg
turb_factor = (no_default) # a user -input shape factor for turbulent

friction factor for non -circular flow channels
width_of_hs = (required) # See PBCoreChannels , same for all channels
wire_diameter = 0 # The wire wrap diameter

input_parameters = (no_default) # Name of the ComponentInputParameters
user object

[../]

• n_zones (required)

Number of zones (regions) of the MultiChannelRodBundle. For example, n_zones = 5 in figure
4.9. Note that it is different than the same parameter defined in FuelAssembly (see section 4.3.8),
which splits the fuel assembly in the axial direction.

• n_side (required)

Number of fuel pin rings of the MultiChannelRodBundle. As shown in figure 4.9, it is also the
same as the number of fuel pins on the side of MultiChannelRodBundle. In figure 4.9, n_side =

5.

• n_channel (required)

52

Number of core-channels to be modeled in this MultiChannelRodBundle component. It has to be
either the same as n_zones, such that one core-channel for each zone, or equal to n_zones+5, such
that the out most zone is modeled as six (6) core-channels and one core-channel for each inner
zone. For example, as shown in figure 4.9, if n_channel = 5, one core-channel will be created for
each zone (region) 1 to 5; however, if n_channel = 10, one core-channel will be created for each
zone (region) 2 to 5, while 6 core-channels are to be created for zone (region) 1. One can easily
figure out that MultiChannelRodBundle currently only supports a hexagonal fuel bundles such as
the one shown in figure 4.9.

• assem_Dft (required)

This parameter specifies the flat-to-flat distance of the assembly, see figure 4.9.

• beta

Turbulent mixing parameter which will be used to compute the turbulent mixing between neigh-
boring core-channels. Currently, it accepts a simple number for all mixing parameters. This will
be improved in future implementations.

• dim_hs

Same for all core-channels of this MultiChannelRodBundle, it specifies how the heat structure is
modeled, either in one-dimensional (dim_hs = 1) or two-dimensional (dim_hs = 2). The default
and recommended value is 1, i.e., one-dimensional.

• initial_P, initial_T, and initial_V

A list of n zones initial pressure (,temperature, and velocity) for the n zones PBCoreChannels.

• lam_factor and turb_factor

A list of n zones user-input shape factors for laminar (turbulent) flow friction factor for non-
circular flow channels for the n zones PBCoreChannels.

• roughness

A list of n zones wall roughnesses for the n zones PBCoreChannels.

• scaling_velocity, tao_pspg, and tao_supg

A list of n zones scaling velocities (,τPSPG, and τSUPG) for the n zones PBCoreChannels. Also,
see section 4.3.4.

• wire_diameter

The wire wrap diameter, same for all PBCoreChannels. The default value is zero.

• pin_diameter (required)

The fuel pin diameter, same for all PBCoreChannels, see figure 4.9.

• pin_pitch (required)

The distance between fuel pin centers, see figure 4.9.

• input_parameters

See section 4.5.

53

4.3.11 HexLatticeCore

HexLatticeCore models a reactor core with a hexagonal lattice such as SFRs, as schematically
shown in figure 4.10. It can automatically generate the core lattice of MultiChannelRodBundle
or PBCoreChannel components, and the inter-assembly structures (including duct walls and inter-
assembly gaps), based on the geometry information specified in the input.

Figure 4.10: Sketch of HexLatticeCore component.

Its input parameters are given as follows:
[./ HexLatticeCore]

assem_Dft = (required) # The flat -to-flat distance of the assembly
assem_layout = (required) # The layout of the assembly lattice
assem_pitch = (required) # The distance between assembly centers
b_multichannel = 0 # if use MultiChannelRodBundle for each assembly
b_radial_heat_transfer = 1 # if modeling radial heat transfer between

assemblies
n_side = (required) # Number of side CoreChannels
orientation = '0 0 1' # See PBOneDFluidComponent
position = '0 0 0' # See PBOneDFluidComponent
radial_power_peaking = (no_default) # radial power peaking factors
ref_duct = (no_default) # reference heat structure for one side of an

assembly duct wall
ref_hs = (no_default) # reference heat structure for intra -assembly gap

and two duct walls
rotation = 0 # See PBOneDFluidComponent

[../]

• n_side (required)

Number of assemblies on each side of the core. For example, n_side = 2 in figure 4.10, and the
total number of assemblies in the entire core is 7.

• assem_Dft (required)

54

The flat-to-flat distance of the assembly, assumed to be the same for all assemblies in the HexLat-
ticeCore.

• assem_pitch (required)

The distance between assembly centers, assumed to be the same for all assemblies in the HexLat-
ticeCore.

• b_multichannel

This input parameter specifies if MultiChannelRodBundle (true) or simply PBCoreChannel (false)
should be used to represent each assembly in the core. By default, it is ‘false’, i.e., to use PB-
CoreChannel.

• assem_layout (required)

This input parameter accepts a list of names for ComponentInputParameters, which are to be
used to automatically create all assemblies within the HexLatticeCore component. The number
of ComponentInputParameters has to be the same as the number of assemblies in the core, and the
assemblies are numbered in an order from left to right, and then top to bottom. If b_multichannel
= true, it is expected that the list of ComponentInputParameters are of MultiChannelRodBundle-
Parameters type, otherwise, PBCoreChannelParameters.

• b_radial_heat_transfer

This input parameter specifies if radial heat transfer between assemblies should be modeled. If
true (default), HexLatticeCore component automatically adds duct wall heat structures between
assemblies, and to the out most boundaries of all assemblies, and models the heat transfer between
duct walls/gaps and their neighboring core channels.

• ref_hs

If radial heat transfer between assemblies should be modeled, this input parameter accepts a
HeatStructureParameters to build duct wall heat structures between two neighboring assemblies.
It is recommended that this reference heat structure models three layers of heat structures, includ-
ing two duct walls and a layer of gap (modeled as a layer heat structure) between them. It assumes
that all such intra-assemblies heat structures have similar geometries.

• ref_duct

If radial heat transfer between assemblies should be modeled, this input parameter accepts a
HeatStructureParameters to build duct wall heat structures for the out most boundaries of all
assemblies. This reference heat structure should contain only one layer of duct wall. It assumes
that all duct wall heat structures have similar geometries.

• radial_power_peaking

This input parameter accepts a list of radial power peaking factors for assemblies within the
HexLatticeCore component. The number of power peaking factors has to be the same as the
total number of assemblies. The power fraction that goes to each assembly is simply calculated
as power peaking factor divided by total number of assemblies. If not specified, it assumes that
power is uniformly distributed across all assemblies.

55

4.3.12 PBCoupledHeatStructure

PBCoupledHeatStructure simulates a HeatStructure with controlled boundary conditions at the
two surfaces, such as adiabatic, fixed temperature, convective heat transfer with ambient, or coupled
with 0-D liquid volume or 1-D liquid components. Normally users will not directly use HeatStruc-
tures to create their models, but use PBCoupledHeatStructure instead.

Most its input parameters are inherited from the base HeatStructure component, see section
4.3.2, and additional input parameters are required to setup its left(right) boundary conditions. The
complete input parameters of PBCoupledHeatStructure are listed below:

[./ PBCoupledHeatStructure]
Ts_init = (no_default) # See HeatStructure
axial_offset = 0 # See HeatStructure
depth_plate = (no_default) # See HeatStructure
dim_hs = 2 # See HeatStructure
elem_number_axial = 1 # See HeatStructure
elem_number_radial = (required) # See HeatStructure
end_elems_refinement = 1 # See HeatStructure
hs_names = (no_default) # See HeatStructure
hs_power = (no_default) # See HeatStructure
hs_power_shape_fn = (no_default) # See HeatStructure
hs_type = plate # See HeatStructure
heat_source_solid = 0 # See HeatStructure
input_parameters = (no_default) # See HeatStructure
length = (required) # See HeatStructure
material_hs = (required) # See HeatStructure
offset = '0 0 0' # See HeatStructure
orientation = '0 0 1' # See HeatStructure
position = '0 0 0' # See HeatStructure
power_fraction = (no_default) # See HeatStructure
radius_i = (no_default) # See HeatStructure
rotation = 0 # See HeatStructure
width_of_hs = (required) # See HeatStructure

D_heated_left = (no_default) # Characteristic heated length at left surface
D_heated_right = (no_default) # Characteristic heated length at right surface
HS_BC_type = (required) # Heat structure boundary condition type.

Allowed options (case sensitive):
Temperature; Convective; Coupled

Hw_left = (no_default) # Convective heat transfer coefficient at
left surface

Hw_right = (no_default) # Convective heat transfer coefficient at
right surface

T_amb_left = 300 # left ambient temperature
T_amb_right = 300 # right ambient temperature
T_bc_left = 600 # Fixed Temperature BC at left surface
T_bc_right = 600 # Fixed Temperature BC
T_external_left = (no_default) # Coupled variable for left external temperature
T_external_right = (no_default) # Coupled variable for right external temperature
h_external_left = (no_default) # Coupled variable for left external heat

transfer coefficients
h_external_right = (no_default) # Coupled variable for right external heat

transfer coefficients
name_comp_left = (no_default) # The name of the left liquid volume connected

to the heat structure
name_comp_right = (no_default) # The name of the right liquid volume connected

to the heat structure
qs_external_left = (no_default) # Coupled variable for left heat flux
qs_external_right = (no_default) # Coupled variable for right heat flux
qs_left = (no_default) # Heat flux at the left surface
qs_right = (no_default) # Heat flux at the right surface

56

HTC_geometry_type_left = Pipe # Heat transfer geometry type at left surface
HTC_geometry_type_right = Pipe # Heat transfer geometry type at left surface
heat_transfer_area_left = 1 # Convective heat transfer area at left surface
heat_transfer_area_right = 1 # Convective heat transfer area at right surface
HT_surface_area_density_left = 1 # Heat transfer surface area density at left surface
HT_surface_area_density_right = 1 # Heat transfer surface area density at right surface
HT_area_multiplier_left = 1 # HT surface area density multiplier at left surface
HT_area_multiplier_right = 1 # HT surface area density multiplier at right surface

[../]

• HS_BC_type (required)

This input parameter specifies the two boundary condition types for the left and right side of
PBCoupledHeatStructure component. Input options include “Temperature”, “Convective”, and
“Coupled”.

If “Temperature” is specified, a Dirichlet type of boundary conditions is used, and it expects an
additional user-input for the boundary condition temperature, see T_bc_left(right).

If “Convective” is specified, a wall heat flux will be used. The wall heat flux could be directly
specified, see qs_left(right). It is also possible to compute the wall surface flux by providing
ambient temperature (see T_amb_left(right)) and heat transfer coefficient to the ambient (see
Hw_left(right)).

In code coupling computation situations, wall heat flux boundary conditions could be calcu-
lated from an external code. Corresponding to the two conditions discussed above, one could
specify an externally calculated wall heat flux, see qs_external_left(right); or a combina-
tion of external temperature and wall heat transfer coefficient, see T_external_left(right) and
h_external_left(right).

If “Coupled” is specified, still a wall heat flux will be used, but the fluid temperature comes
from a neighboring component, either a PBVolumeBranch or a PBOneDFluidComponent, see
name_comp_left(right). Heat transfer coefficient to the coupled component can be specified in
Hw_left(right), and if not specified, they will be automatically computed.

• T_bc_left and T_bc_right

If the left/right boundary condition type is “Temperature”, it accepts the value (or a function) for
the left/right boundary condition temperatures. The default values are 600 K.

• qs_left and qs_right

If the left/right boundary condition type is “Convective”, it accepts the value (or a function) for
the left/right wall heat flux as boundary conditions.

• T_amb_left and T_amb_right; Hw_left and Hw_right

If the left/right boundary condition type is “Convective”, T_amb_left(right)) specifies the ambi-
ent temperature, and Hw_left(right)) specifies the wall heat transfer coefficient to compute the
wall heat flux. Both of these inputs could be either values or function names. The default value
for T_amb_left(right) is 300 K.

• qs_external_left and qs_external_right

If the left/right boundary condition type is “Convective”, it accepts the variable name for exter-
nally computed left/right wall heat flux as boundary conditions.

57

• T_external_left and T_external_right; h_external_left and h_external_right

If the left/right boundary condition type is “Convective”, T_external_left(right) specifies an
externally computed ambient temperature, and h_external_left(right) specifies an externally
computed wall heat transfer coefficient to compute the wall heat flux. Both of these inputs have
to be specified as coupled “variables”.

• name_comp_left and name_comp_right

If the left/right boundary condition type is “Coupled”, it accepts the name of the component
coupled to the left(right) surface of this PBCoupledHeatStructure component. The coupled com-
ponent has to be either a PBVolumeBranch or a PBOneDFluidComponent.

• D_heated_left and D_heated_right

Only when the left/right boundary condition type is “Coupled”, and the coupled component is of
PBOneDFluidComponent type, it specifies the characteristic length to compute wall heat transfer
coefficient in the coupled left(right) PBOneDFluidComponent component. If not specified, the
coupled PBOneDFluidComponent uses its hydraulic diameter as the characteristic length for heat
transfer.

• HTC_geometry_type_left and HTC_geometry_type_right

Heat transfer geometry type at the left(right) surface. Acceptable options are “Pipe (default)”,
“Bundle”, “Vertical-Plate”, and “Horizontal-Plate”.

• HT_surface_area_density_left and HT_surface_area_density_right

Only when the left/right boundary condition type is “Coupled”, and the coupled component is of
PBOneDFluidComponent type, it specifies the heat transfer surface area density of this PBCou-
pledHeatStructure component with respect to the coupled left(right) PBOneDFluidComponent
component.

• heat_transfer_area_left and heat_transfer_area_right

Only when the left/right boundary condition type is “Coupled”, and the coupled component is of
PBVolumeBranch type, it specifies the left(right) side heat transfer surface area of this PBCou-
pledHeatStructure component.

• HT_area_multiplier_left and HT_area_multiplier_right

In cases where complex heat structures have to be simplified to simpler geometries (e.g., cylin-
der), or heat structure surfaces are only partially heated/cooled by the coupled flow component,
left (right) surface area multiplier HT_area_multiplier_left(right) is used to correct such a dis-
tortion effect.

In any case, the coupled left (right) flow component recieves an energy source as haw∆T , in which
aw is the left (right) heat surface area density based on true geometry of the complex heat structure
geometry, see HT_surface_area_density_left(right), h the heat transfer coefficient, and ∆T the
difference between heat strucutre surface temperature and fluid temperature. Because of geometry
simplification, the simplified heat strucutre surface area is no longer the same as the true surface
area, and therefore a multiplier is used to correct such a distortion. The multiplier value should
be set as the ratio of true heat transfer area to the simplified heat strucutre surface area.

58

4.3.13 HeatStructureWithExternalFlow

HeatStructureWithExternalFlow is also a HeatStructure-based component similar to PBCou-
pledHeatStructure, however with the main purpose to facilitate code-to-code coupling via its bound-
ary surfaces, either using MOOSE’s MultiApp infrastructure or using data exchange with non-
MOOSE-based application. When using MOOSE’s MultiApp infrastructure, this external MOOSE
simulation (a.k.a., MOOSE subApp) will need a different component, HeatTransferWithExternal-
HeatStructure (see section 4.3.14) to realize data exchange. It is always assumed that its left-side
surface is coupled to an external code, while its right-side surface is reserved for SAM to handle its
boundary condition.

[./ HeatStructureWithExternalFlow]
Ts_init = (no_default) # See HeatStructure , NOT USED.
axial_offset = 0 # See HeatStructure
depth_plate = (no_default) # See HeatStructure
dim_hs = 2 # See HeatStructure
elem_number_axial = 1 # See HeatStructure
elem_number_radial = (required) # See HeatStructure
end_elems_refinement = 1 # See HeatStructure
hs_names = (no_default) # See HeatStructure
hs_power = (no_default) # See HeatStructure
hs_power_shape_fn = (no_default) # See HeatStructure
hs_type = plate # See HeatStructure
length = (required) # See HeatStructure
material_hs = (required) # See HeatStructure
offset = '0 0 0' # See HeatStructure
orientation = '0 0 1' # See HeatStructure
position = '0 0 0' # See HeatStructure
power_fraction = (no_default) # See HeatStructure
radius_i = (no_default) # See HeatStructure
rotation = 0 # See HeatStructure
width_of_hs = (required) # See HeatStructure
heat_source_solid = 0 # See HeatStructure

HS_BC_type = (required) # Heat structure boundary condition type
Hw_internal = None # convective heat transfer coefficient

at SAM Side surface
T_bc_internal = 600 # Fixed Temperature BC
T_external_init = 600 # Initial heat structure temperature
T_identifier_in_file = (no_default) # External temperature identifier

used in external data file
T_internal = 300 # Sam Side ambient temperature
delete_data_file = (no_default) # Delete data file after reading
eos_internal = None # The name of EOS to use
h_external_init = 3000 # Initial heat transfer coefficient
h_identifier_in_file = (no_default) # External heat transfer coefficient

identifier used in external data file
input_data_file = (no_default) # The file name used to save external

coupling information
name_comp_internal = None # The name of the Sam Side liquid

volume connected to the heat structure
output_data_file = (no_default) # The file name used to save SAM

output information for coupling
output_mesh = (no_default) # The mesh used to output SAM data
output_template_file = (no_default) # The template file name used to

save SAM output information for coupling
qs_external_init = 0 # Initial heat flux
qs_internal = None # Heat flux at the SAM Side surface

HT_surface_area_density_internal = 1 # heat transfer surface area density
at Sam Side surface

59

heat_transfer_area_internal = 1 # convective heat transfer area
at Sam Side surface

[../]

• HS_BC_type (required)

This input parameter specifies: 1) a list of two heat structure boundary condition types for the
left-side (coupled to an external code) and right-side (within SAM) of this component; or 2) a
list of one heat structure boundary condition type just for the left-side (coupled to an external
code) of this component, while the right-side surface assumes a zero heat flux boundary condi-
tion. For the left-side boundary condition type, it could be one of “CoupledConvection T h”,
“CoupledConvection q”, or “PpsConvective”.

Using MOOSE’s MultiApp infrastructure, “CoupledConvection T h” facilitates a surface heat
flux coupling via externally computed temperature and heat transfer coefficient, which also re-
quires additional input parameters, such as:
T_external_init

h_external_init.

Using MOOSE’s MultiApp infrastructure, “CoupledConvection q” simply takes an externally
computed wall heat flux as its boundary condition. It requires an additional input parameter,
qs_external_init.

“PpsConvective” facilitates SAM code coupling with a non-MOOSE-based code, such as SAS.
The coupling mechanism is similar to “CoupledConvection T h”, which also computes its wall
heat flux from externally computed fluid temperature and heat transfer coefficient. Additional
input parameters are required for these external fluid temperature (see T_identifier_in_file)
and heat transfer coefficient (see h_identifier_in_file).

The right-side boundary condition type of this heat structure can be “Temperature”, “Convective”,
or “Coupled”, the same as defined in PBCoupledHeatStructure component, see section 4.3.12.

• T_external_init

This input parameter specifies the initial value for the external temperature variable. The default
value is 600 K.

• h_external_init

This input parameter specifies the initial value for the external heat transfer coefficient variable.
The default value is 3000 W/m2K.

• qs_external_init

This input parameter specifies the initial value for the externally computed wall heat flux variable.
The default value is 0.

• input_data_file, T_identifier_in_file, and h_identifier_in_file

When “PpsConvective” is used, input_data_file specifies the file name, where the external fluid
temperature and heat transfer coefficient are stored. T_identifier_in_file specifies the name of
external fluid temperature stored in this file. h_identifier_in_file specifies the name of external
heat transfer coefficient stored in this file.

60

• delete_data_file

This input parameter specifies if the external input file (see input_data_file) should be deleted
after data being extracted from it.

• output_data_file, output_mesh, output_template_file

When coupled to an external code, such as SAS, these input parameters specify the output file
name to store SAM’s out-going data, the mesh to be used for SAM’s out-going data, and the
template file that this out-going data file should follow.

• T_bc_internal

If the right-side surface boundary condition type is “Temperature”, this input parameter specifies
the surface temperature value (or a function name).

• T_internal and Hw_internal

If the right-side surface boundary condition type is “Convective”, as one of two available options,
this input parameter specifies the fluid temperature and heat transfer coefficient values. The other
option is to specify qs_internal.

• qs_internal

If the right-side surface boundary condition type is “Convective”, this input parameter specifies
the surface flux value (or a function name).

• name_comp_internal and eos_internal

If the right-side surface boundary condition type is “Coupled”, these input parameters specify the
name of, and equation of state used in this coupled component.

• HT_surface_area_density_internal

If the right-side surface boundary condition type is “Convective”, and the coupled component is
of one-dimensional flow type, such as PBOneDFluidComponent and PBCoreChannel, this input
parameter specifies the heat transfer area density of this heat structure. The default value is 1
[m2/m3] (or [1/m]).

• heat_transfer_area_internal

If the right-side surface boundary condition type is “Convective”, and the coupled component is
of zero-dimensional flow type, such as PBVolumeBranch, this input parameter specifies the heat
transfer area of this heat structure. The default value is 1 [m2].

4.3.14 HeatTransferWithExternalHeatStructure

This is a non-geometric type of component to facilitate data exchange between two MOOSE-
based simulations via its MultiApp infrastructure. This component is intended to take the wall
temperature from an external MOOSE-based application (i.e., a master mooseApp), while export
its fluid component’s fluid temperature and heat transfer coefficient to this external application, in
order to compute the conjugate heat transfer.

61

[./ HeatTransferWithExternalHeatStructure]
T_wall_name = T_wall_external # Wall temperature variable name
elemental_vars = 0 # if use elemental variables for T_wall and htc
flow_component = (required) # Name of the flow component
htc_name = htc_external # Heat transfer coefficient variable name
initial_T_wall = (required) # External app wall temperature IC value

[../]

• flow_component (required)

The name of the flow component, to which an external HeatStructure is coupled with, i.e., where
the external heat flux to be applied.

• T_wall_name

The name of incoming external wall temperature name, which will be transferred from an external
MooseApp. Their default values are “T wall external”.

• initial_T_wall (required)

This input parameter specifies the initial value for the externally computed wall temperature be-
fore data transfer begins.

• htc_name

The name of outgoing heat transfer coefficient name, which is computed in the flow component
(see flow_component) and to be transferred to the external MooseApp. Their default values are
“T wall external”.

• elemental_vars

This input parameter specifies if elemental type of variables, in contrast to nodal type of variable,
are to be used for the outgoing heat transfer coefficient and the incoming external wall tempera-
ture.

4.3.15 PBHeatExchanger

PBHeatExchanger simulates a heat exchanger, including the fluid flow in the primary and sec-
ondary sides, convective heat transfer, and the heat conduction in the tube wall. Both counter-
current and concurrent heat exchangers can be modeled. The two sides of the heat exchanger can
have different orientation, lengths, flow areas, and hydraulic diameters. This gives the users more
flexibilities to model a generic heat exchanger, including advanced heat exchangers being pursued
by advanced reactor designs. Note that the two fluid sides of the heat exchanger and the tube wall
must have the same number of elements axially.

62

Tube-side flow

Shell-side flow

(a) Concurrent design

Shell-side flow

Tube-side flow

(b) Counter-current design

Figure 4.11: Two types of PBHeatExchanger component designs. As an example, the two figures
show shell-and-tube heat exchanger design.

The input parameters of PBHeatExchanger include those to setup the primary and secondary
flow pipes, as well as those to setup the heat structure between the two pipes. Most of them are
referred to PBOneDFluidComponent (see section 4.3.1) or HeatStructure (see section 4.3.2).

[./ PBHeatExchanger]
HX_type = Countercurrent # Heat exchanger type

A = (required) # See PBOneDFluidComponent
A_secondary = (required) # See PBOneDFluidComponent

(secondary side)
Dh = (required) # See PBOneDFluidComponent
Dh_secondary = (required) # See PBOneDFluidComponent

(secondary side)
HTC_geometry_type = Pipe # See PBOneDFluidComponent
HTC_geometry_type_secondary = Pipe # See PBOneDFluidComponent

(secondary side)
HTC_user_option = Default # See PBOneDFluidComponent
HTC_user_option_secondary = Default # See PBOneDFluidComponent

(secondary side)
HT_surface_area_density = (no_default) # See PBOneDFluidComponent
HT_surface_area_density_secondary = (required) # See PBOneDFluidComponent

(secondary side)
HoD = 1 # See PBOneDFluidComponent
Hw = (no_default) # See PBOneDFluidComponent
Hw_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
Ph = (no_default) # See PBOneDFluidComponent
PoD = 1 # See PBOneDFluidComponent
PoD_secondary = 1 # See PBOneDFluidComponent

(secondary side)
SC_HTC = 1 # See PBOneDFluidComponent
SC_HTC_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
SC_WF = 1 # See PBOneDFluidComponent
SC_WF_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
Twall_init = (required) # See Ts_init of HeatStructure
User_defined_HTC_parameters = '0 0 0 0 0 0 0' # See PBOneDFluidComponent
User_defined_HTC_parameters_secondary = '0 0 0 0 0 0 0' # See PBOneDFluidComponent

(secondary side)

63

User_defined_WF_parameters = '0 0 0' # See PBOneDFluidComponent
User_defined_WF_parameters_secondary = '0 0 0' # See PBOneDFluidComponent

(secondary side)
WF_geometry_type = Pipe # See PBOneDFluidComponent
WF_geometry_type_secondary = Pipe # See PBOneDFluidComponent

(secondary side)
WF_user_option = Default # See PBOneDFluidComponent
WF_user_option_secondary = Default # See PBOneDFluidComponent

(secondary side)
dim_wall = 2 # See dim_hs of HeatStructure
end_elems_refinement = 1 # See both PBOneDFluidComponent

(for both primary and secondary side)
and HeatStructure

eos = (required) # See PBOneDFluidComponent
eos_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
f = (no_default) # See PBOneDFluidComponent
f_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
fluid_conduction = (no_default) # if modeling the fluid axial conduction
heat_source = 0. # See PBOneDFluidComponent
heat_source_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
hs_type = plate # See dim_hs of HeatStructure
initial_P = (no_default) # See PBOneDFluidComponent
initial_PS = (no_default) # See PBOneDFluidComponent
initial_P_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
initial_T = (no_default) # See PBOneDFluidComponent
initial_T_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
initial_V = (no_default) # See PBOneDFluidComponent
initial_V_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
lam_factor = 1 # See PBOneDFluidComponent
lam_factor_secondary = 1 # See PBOneDFluidComponent

(secondary side)
length = (required) # See PBOneDFluidComponent
length_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
material_wall = (required) # See material_hs of HeatStructure
n_elems = (required) # See PBOneDFluidComponent
n_wall_elems = (required) # See elem_number_radial of HeatStructure
orientation = '0 0 1' # See PBOneDFluidComponent
orientation_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
position = '0 0 0' # See PBOneDFluidComponent
radius_i = (no_default) # See HeatStructure
rotation = 0 # See PBOneDFluidComponent
roughness = 0 # See PBOneDFluidComponent
roughness_secondary = 0 # See PBOneDFluidComponent

(secondary side)
scalar_source = (no_default) # See PBOneDFluidComponent
scalar_source_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
scaling_velocity = (no_default) # See PBOneDFluidComponent
scaling_velocity_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
tao_pspg = (no_default) # See PBOneDFluidComponent
tao_pspg_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)
tao_supg = (no_default) # See PBOneDFluidComponent
tao_supg_secondary = (no_default) # See PBOneDFluidComponent

(secondary side)

64

turb_factor = 1 # See PBOneDFluidComponent
turb_factor_secondary = 1 # See PBOneDFluidComponent

(secondary side)
wall_thickness = (required) # See width_of_hs of HeatStructure

heat_transfer_area_error_tolerance = 0.001 # The ratio of (length*Phf) at two
sides of HX must be equal to 1 for
plate type and be equal to the ratio
of inner and outer pipe diameters
for cylinder type within this relative
tolerance value

[../]

• HX_type

This input parameter specifies the type of heat exchanger, either “Concurrent” or “Countercurrent
(default)”. The two types of heat exchanger designs are shown in figure 4.11.

• heat_transfer_area_error_tolerance

This input parameter specifies an error tolerance, if the user-input parameters cause wall heat
structure two-side surface areas inconsistence (see discussion below). The default value is 10-3.

Since the heat exchanger input parameters are organized in a way that the they are provided sepa-
rately for three sub-components, i.e., the primary-side pipe, the secondary-side pipe, and the solid
wall between them, user-input inconsistence could often raise, which could cause inconsistence
in heat transfer areas between the two sides, and consequently introduces error in overall heat
exchanger energy balance.

If the solid-wall heat structure is of “Plate” type, the heat transfer areas on both sides are the same,
which requires,

Apaw,pLp = Asaw,sLs;

and for “cylinder”, the two-side areas follows,

Apaw,pLp

Asaw,sLs
=

rp

rs
;

in which, A is flow area, aw is heat transfer area density, L is pipe length, r is the radius on wall
surface; subscripts p and s denote the primary- and secondary-side, respectively.

The input heat transfer area error is then defined as,

ε =

∣∣∣∣Apaw,pLp

Asaw,sLs
−1
∣∣∣∣

for plate type of wall heat structure, and

ε =

∣∣∣∣Apaw,pLp

Asaw,sLs
−

rp

rs

∣∣∣∣
for cylinder type of wall heat structure.

In PBHeatExchanger, it has
rp = rs +δwall

where δwall is wall thickness (see wall_thickness), and rs is specified via radius_i. Thus, it
requires that the primary-side is to be set at the shell-side of the heat exchanger.

65

• end_elems_refinement

This same input parameter is defined in both PBOneDFluidComponent and HeatStructure. If
specified, the specified value will be passed to both PBOneDFluidComponent (the primary and
secondary pipes) and HeatStructure to create finer meshes at the two ends of corresponding
meshes.

This parameter is especially useful when the simulated fluid temperature experiences unphysical
spatial oscillations near the inlet/outlet of PBHeatExchanger due to coarse mesh being used.

4.3.16 PBTDJ

PBTDJ is an inlet boundary component in which the flow velocity and temperature are pro-
vided by user-defined values or (time-dependent) functions. It provides boundary conditions to the
connecting 1-D fluid components. Its input parameters are listed as follows:
[./ PBTDJ]

S_bc = (no_default) # Given passive scalar value on boundary
S_fn = (no_default) # Name of the scalar function
T_bc = (no_default) # Desired temperature
T_fn = (no_default) # Name of the temperature function
eos = (required) # The name of equation of state object to use.
fluid_conduction = (no_default) # if modeling the fluid axial conduction
input = (no_default) # Names of the connected components
input_parameters = (no_default) # Name of the ComponentInputParameters user object
v_bc = (no_default) # Desired velocity
v_fn = (no_default) # Name of the velocity function
wall_bc = 0 # true for modeling a wall bc, dead end
weak_bc = 0 # true for weakly imposed BCs , false for

strongly imposed BCs
[../]

• eos (required)

The name of equation of state object to use for this PBTDJ component.

• T_bc

This input parameter specifies the inlet temperature, as a number, of this PBTDJ component.

• T_fn

This input parameter specifies the inlet temperature, as a function, of this PBTDJ component. If
both T_bc and T_fn are specified, T_fn is used.

• v_bc

This input parameter specifies the inlet velocity, as a number, of this PBTDJ component.

• v_fn

This input parameter specifies the inlet velocity, as a function, of this PBTDJ component. If both
v_bc and v_fn are specified, v_fn is used.

• input

Name of the connected component and the connected end, (in) or (out), of the component, e.g.,
input = ‘pipe1(in)’, and input = ‘pipe2(out)’.

66

• S_bc and S_fn

When passive scalars are present in the system, boundary conditions are also needed for them at
this PBTDJ component. It first seeks a user input of S_fn, a list of function names to specify the
boundary values of all scalars. If S_fn is not given, it then seeks S_bc, a list of values to specify
the boundary values of all scalars. If neither is specified, zero values are used as the boundary
conditions for all scalar variables.

• fluid_conduction

This input parameter specifies if axial fluid conduction should be modeled. If not specified, it
looks for the same input parameter in the global parameter inputs, see section 4.1.

• wall_bc

This input parameter specifies if a wall boundary condition, i.e., a dead end, should be modeled
using this PBTDJ component. The default value is false.

• weak_bc

This input parameter specifies if a weakly imposed boundary condition should be used. The
default value is false.

4.3.17 PBTDV

PBTDV is a boundary component in which the pressure and temperature are provided by user-
defined (time-dependent) functions. It provides boundary conditions to the connecting 1-D fluid
components. Note if the flow is flowing into the PBTDV, the temperature boundary condition will
not be used by the connecting fluid components. Its input parameters are listed as follows:

[./ PBTDJ]
S_bc = (no_default) # Given passive scalar value on boundary
S_fn = (no_default) # Name of the passive scalar function
T_bc = (no_default) # Given temperature on boundary
T_fn = (no_default) # Name of the temperature function
eos = (required) # The name of equation of state object to use.
fluid_conduction = (no_default) # if modeling the fluid axial conduction
input = (no_default) # Names of the connected components
input_parameters = (no_default) # Name of the ComponentInputParameters user object
p_bc = 100000 # Given pressure on boundary
p_fn = (no_default) # Name of the pressure function
stagnant = 0 # true for modeling a stagnant back pressure
wall_bc = 0 # true for modeling a wall bc, dead end
weak_bc = 0 # true for weakly imposed BCs , false for

strongly imposed BCs
[../]

• eos (required)

The name of equation of state object to use for this PBTDJ component.

• T_bc

This input parameter specifies the inlet temperature, as a number, of this PBTDV component. It
only matters when the flow direction is from PBTDV to its connected component.

67

• T_fn

This input parameter specifies the inlet temperature, as a function, of this PBTDV component. If
both T_bc and T_fn are specified, T_fn is used.

• p_bc

This input parameter specifies the pressure, as a number, of this PBTDV component.

• p_fn

This input parameter specifies the pressure, as a function, of this PBTDV component. If both p_bc

and p_fn are specified, p_fn is used.

• stagnant

This input parameter specifies if stagnant pressure boundary condition should be used in this
PBTDV component.

• input

Name of the connected component and the connected end, (in) or (out), of the component, e.g.,
input = ‘pipe1(in)’, and input = ‘pipe2(out)’.

• S_bc and S_fn

The same as discussed in PBTDJ, see section 4.3.16.

• fluid_conduction

This input parameter specifies if axial fluid conduction should be modeled. If not specified, it
looks for the same input parameter in the global parameter inputs, see section 4.1.

• wall_bc

This input parameter specifies if a wall boundary condition, i.e., a dead end, should be modeled
using this PBTDV component. The default value is false.

• weak_bc

This input parameter specifies if a weakly imposed boundary condition should be used. The
default value is false.

4.3.18 PressureOutlet

PressureOutlet provides a subset of functionality of PBTDV, and will be removed in the future.

4.3.19 CoupledTDV

CoupledTDV is a special PBTDV component that is designed to facilitate the coupling between
SAM and external CFD codes. Instead of user-specified values, in coupled code simulations, its
boundary condition values are obtained from other external codes, and meanwhile, it also provides
boundary conditions to these external codes. Compared with PBTDV, it does not require additional
inputs, however, the code-to-code coupling is realized using CoupledCFDExecutioner.

68

4.3.20 CoupledPPSTDJ

CoupledPPSTDJ is a special PBTDJ component that is designed to facilitate MultiApp simu-
lations. Instead of user-specified values, in MultiApp simulations, its boundary condition values
are obtained from other MOOSE applications, and meanwhile, it also provides boundary conditions
to other MOOSE applications. Inherited from PBTDJ, it requires two extra input parameters to
facilitate MultiApp information passing between MOOSE applications.

• postprocessor_vbc and postprocessor_Tbc

This input parameter specifies a Postprocessor name, which will be used to specify the velocity
(temperature) boundary condition values of this CoupledPPSTDJ component.

4.3.21 CoupledPPSTDV

Similar to CoupledPPSTDJ, CoupledPPSTDV is a special PBTDV component that is designed
to facilitate MultiApp simulations. Instead of user-specified values, in MultiApp simulations, its
boundary condition values are obtained from other MOOSE applications, and meanwhile, it also
provides boundary conditions to other MOOSE applications. Inherited from PBTDV, it requires two
extra input parameters to facilitate MultiApp information passing between MOOSE applications.

• postprocessor_pbc and postprocessor_Tbc

This input parameter specifies a Postprocessor name, which will be used to specify the pressure
(temperature) boundary condition values of this CoupledPPSTDJ component.

4.3.22 PBSingleJunction

PBSingleJunction is a special junction component, and it models a zero-volume flow joint where
only two 1-D fluid components are connected. It thus does not need to model the mass, momentum,
and energy conservations at the junction, but to assure that the two connecting nodes (1 and 2) have
consistent boundary conditions.

Its input parameters are listed as follows:

[./ PBSingleJunction]
eos = (required) # The name of equation of state object to use.
inputs = (no_default) # Inputs of this junction
nodal_Tbc = true # If applying temperature NodalBC to the connected pipe ends
outputs = (no_default) # Outputs of this junction
K = 0 # The form loss coefficient
K_reverse = (no_default) # The form loss coefficient in reverse direction
weak_constraint = true # Option to use weak formulation of single junction model
K_Borda_Carnot = false # Option to use Borda -Carnot equation to calculate the form

loss coefficient due to abrupt area change
[../]

• eos (required)

The name of equation of state object to use.

• inputs and outputs

69

These input parameters specify the inputs and outputs connection of this PBSingleJunction com-
ponent. The input syntax is, for example, inputs = ‘pipe1(in)’, and outputs = ‘pipe2(out)’.
There is only one inputs and one outputs allowed for this PBSingleJunction component.

• weak_constraint

There are currently two options in the modeling of the single junction: weak formulation and
strong formulation. In the weak formulation model, the single junction does not model the mass,
momentum, and energy conservation at the junction, but to assure that the two connecting nodes
(1 and 2) have consistent boundary conditions. This weak formulation is computationally efficient
but does not enforce mass and energy balance well. The strong formulation adds the mass, mo-
mentum, and energy conservation at the junction and helps enforce the mass and energy balance.
Caution: the weak formulation will be removed in the future.

• nodal_Tbc

This input parameter specifies if temperature NodalBC to be applied to the connected pipe ends.
The default value is true.

• K and K_inverse

Those input parameters specify the form loss coefficient in the flow direction and in the reverse
flow direction across this junction.

• K_Borda_Carnot

The option to use the built-in Borda-Carnot equation for calculating the form loss coefficient in
the forward and reverse flow direction across this junction. The form loss coefficient is calculated
based on the upwind flow kinetic energy. Caution: if this option is set to true, the user-provided K

and K_inverse will be ignored.

4.3.23 PBBranch

PBBranch models a 0-D flow junction where multiple 1-D fluid components are connected. The
component assumes no volume, and thus there is no thermal inertia.

Its input parameters are listed as follows:

[./ PBBranch]
Area = (required) # Reference area of this branch
K = (required) # Form loss coefficients
K_B = (no_default) # coefficient B in calculating Reynolds number -dependent

form loss coefficients
K_B_reverse = (no_default) # coefficient B in calculating Reynolds number -dependent

form loss coefficients in reverse direction
K_C = (no_default) # coefficient C in calculating Reynolds number -dependent

form loss coefficients
K_C_reverse = (no_default) # coefficient C in calculating Reynolds number -dependent

form loss coefficients in reverse direction
K_reverse = (no_default) # Form loss coefficients in reverse direction
eos = (required) # The name of equation of state object to use.
initial_P = (no_default) # Initial pressure of this branch
initial_T = (no_default) # Initial temperature of this branch
initial_V = (no_default) # Initial velocity of this branch
inputs = (no_default) # Inputs of this junction
joint_model = 1 # Using volume or joint model
nodal_Tbc = 0 # If applying temperature NodalBC to connected pipe ends

70

outputs = (no_default) # Outputs of this junction
scale_factors = '1 1 1e-06' # variable scale factor

[../]

• eos (required)

The name of equation of state object to use.

• Area (required)

The reference area of this branch.

• inputs and outputs

These input parameters specify the inputs and outputs connection of this PBBranch compo-
nent. The input syntax is, for example, inputs = ‘pipe1(out) pipe2(out)’, and outputs =

‘pipe3(in)’.

• K (required)

This input parameter specifies a list of values for forward form loss coefficients at each connection
of this PBBranch component. The total number of listed values has to be the same as the total
number of connections. The forward direction is defined as if it flows from its connected ‘inputs’
pipes to this PBBranch component, or from this PBBranch component to its connected ‘outputs’
pipes. Otherwise, the flow is in reversed direction.

• K_reverse

Similar to K, this input parameter specifies the reverse flow form loss coefficients at each connec-
tion of this PBBranch component. It is not required, and if not specified, they assume the same
values from the forward form loss coefficients. If a user input is given, the total number of listed
values has to be the same as the total number of connections.

• K_B and K_C

These two input parameters supplement input parameter, K, when forward form loss coefficients
are Reynolds number-dependent,

Ktotal = A+BReC

in which, A is the value from input parameter K, B from K_B, and C from K_C. If specified, these
two parameters have to be both given.

• K_B_reverse and K_C_reverse

These two input parameters are similar to K_B and K_C.

• nodal_Tbc

This input parameter specifies if temperature NodalBC to be applied to the connected pipe ends.
The default value is true.

• initial_P, initial_V, and initial_T

These input parameters specify the initial pressure (velocity, temperature) of this PBBranch com-
ponent. If not specified, the component seeks the global initial values, see section 4.1.

71

• scale_factors

Similar to the global scaling factors, this input parameter specifies the local scaling factors for the
three variables: pressure, velocity, and temperature. The default values are ‘1.0 1.0 1.0e-6’.

• joint_model (advanced)

This input parameter specifies if volume or joint model to be used in this PBBranch component.
The default value is true.

4.3.24 PBVolumeBranch

PBVolumeBranch is a type of PBBranch while considering its volume effects, and thus, it ac-
counts for the mass and energy balance between inlets and outlets, as well as its own volume.
Inherited from PBBranch, PBVolumeBranch requires additional input parameters.

[./ PBVolumeBranch]
Area = (required) # See PBBranch
K = (required) # See PBBranch
K_B = (no_default) # See PBBranch
K_B_reverse = (no_default) # See PBBranch
K_C = (no_default) # See PBBranch
K_C_reverse = (no_default) # See PBBranch
K_reverse = (no_default) # See PBBranch
eos = (required) # See PBBranch
initial_P = (no_default) # See PBBranch
initial_T = (no_default) # See PBBranch
initial_V = (no_default) # See PBBranch
inputs = (no_default) # See PBBranch
joint_model = 1 # See PBBranch
nodal_Tbc = 0 # See PBBranch
outputs = (no_default) # See PBBranch
scale_factors = '1 1 1e-06' # See PBBranch

Steady = 0 # for steady state initialization
center = (required) # geometric center of the volume
display_pps = 0 # display post processors
height = (no_default) # Height of the component
orientation = '0 0 1' # Orientation vector of the component
position = '0 0 0' # Origin (start) of the component
rotation = 0 # Rotation of the component (in degrees)
volume = (required) # Volume of the component
width = (no_default) # Width of the component

[../]

• center (required)

The geometric center of the volume, which is important to compute pressure jump between this
PBVolumeBranch and its connected pipes due to gravity head. It also overrides the values given
in position (if ever specified).

• volume (required)

The Volume of the component.

• display_pps

72

PBVolumeBranch adds several Postprocessors to monitor its field variables (pressure, tempera-
ture, density, and velocity). If specified true, these Postprocessors values will be displayed. The
default value is false.

• Steady

This input parameter specifies if the initial values are to be used for steady state initialization. The
default value is false.

• width and height

For display purpose, these parameters specify the width and height of this PBVolumeBranch com-
ponent. For width, if not specified, it is computed as the pipe diameter as if the PBVolumeBranch
was a round pipe section, i.e., width = 2

√
A/π , in which A is the reference area. For height, if

not specified, it is computed as volume divided by the reference area.

• orientation, position, and rotation

See PBOneDFluidComponent, section 4.3.1. In this component, they are used to generate mesh
for display purpose.

4.3.25 Valve

Valves are mechanical devices that regulate, direct, or control the fluid flow by opening, clos-
ing, or partially blocking the flow path. There exist many types of valves, such as ball valves,
check valves, pressure relief valves, etc. In nuclear reactors, examples include the main steam iso-
lation valve in boiling water reactor designs, the pressure relief valve installed on the pressurizer of
pressurized water reactor designs, and many other types of valves. The Valve component currently
implemented in the code is a relatively simple one that only performs opening and closing functions.
Similar to other Junction/Branch type of components, it connects pipes and regulates the flow by
adjusting its opening area. The Valve component accepts users input to control its opening/closing
action, and the form loss is automatically computed using the Borda-Carnot correlation [16].

Input parameters for the Valve component is listed as follows,

[./ Valve]
eos = (required) # See PBBranch
initial_P = (no_default) # See PBBranch
initial_T = (no_default) # See PBBranch
initial_V = (no_default) # See PBBranch
inputs = (no_default) # See PBBranch
joint_model = 1 # See PBBranch
nodal_Tbc = 0 # See PBBranch
outputs = (no_default) # See PBBranch
scale_factors = '1 1 1e-06' # See PBBranch

control_function = (no_default) # User specified control function for the valve
direct_control_function = (no_default) # User specified area change as a function of time
initial_area = (required) # Initial flow area for the valve if it does not

start fully open
open_area = (required) # Flow area when the valve is fully open
time_constant = (no_default) # Time constant that specifies the normalized

[0-1] rate per second
[../]

For these input parameters, only those additional to the PBBranch is discussed.

73

• open_area (required) and initial_area (required)

The open_area input parameter is the fully opened valve area, and initial_area is the initial valve
opening area.

• direct_control_function

There are two ways to control the Valve component opening and closing. The first option is to
directly control the normalized valve opening area by specifying a time-dependent direct control
function, i.e., direct_control_function. The other option is to specify the opening and closing
action, see control_function. The simplest direct control could be a ‘PiecewiseLinear’ function
that linearly opens/closes the valve area. As an example, the following function demonstrates that
a valve is linearly closing between 5 to 7 sec., staying as fully closed between 7 to 13 sec., and
then reopens between 13 to 15 sec., and eventually stays fully opened after 15 sec.

[Functions]
[./ direct_control]

'x' means time without explicitly defining it.
type = PiecewiseLinear
x = '0 5 7 13 15 1e5'
y = '1 1 0 0 1 1'

[../]
[]

[Components]
[./ valve_example]

type = Valve
...
direct_control_function = direct_control
...

[../]
[]

One can also take advantages of the smoothness of hyperbolic functions to specify a smooth
opening/closing function, as demonstrated in the following example:

[Functions]
[./ direct_control]

type = ParsedFunction
value = '1 / (1 + exp(40 * (t - 2.0))) '

[../]
[]

• control_function and time_constant

This is the second option to control the Valve, which specifies time-dependent opening/closing
action of the Valve, i.e., control_function. This function must be a time-dependent ‘PiecewiseC-
onstant’ function, with its values being one of 1 (performing opening action), -1 (performing
closing action), and 0 (no action). This parameter is paired with an additional input parameter,
time_constant, which specifies how fast the valve opening/closing action is, in [1/sec.]. In other
words, the reciprocal of time_constant is the time needed to perform an opening action from fully
close status to fully open status, or vice versa.

The following example shows how the Valve is controlled using both control_function and
time_constant input parameters. This control is equivalent to the ‘PiecewiseLinear’ example
discussed in the previous direct_control_function input parameter.

74

[Functions]
[./ action_control]

type = PiecewiseConstant
[0, 5], [7, 13], [15, 1e5] no action
[5, 7] performing closing action
[13, 15] performing opening action
x = '0 5 7 13 15 1e5'
y = '0 -1 0 1 0 0'

[../]
[]

[Components]
[./ valve_example]

type = Valve
...
control_function = action_control
time_constant = 0.5
...

[../]
[]

4.3.26 PBLiquidVolume

PBLiquidVolume is a special PBVolumeBranch, in which the liquid volume can change due
to in and out flows, and the liquid level is tracked during the transient. The reference gas phase
pressure in the PBLiquidVolume is either an ambient pressure, figure 4.12 (a), or comes from an
external component, CoverGas, figure 4.12 (b). For CoverGas component, see section 4.3.27.

(a)

Cover gas

(b)

Figure 4.12: The PBLiquidVolume concept used in SAM. (a) PBLiquidVolume with ambient pres-
sure as its reference pressure; (b) PBLiquidVolume with an external CoverGas to specify its refer-
ence pressure.

Additional to what are needed in PBVolumeBranch (see section 4.3.24), PBLiquidVolume re-
quires several additional input parameters for the initial liquid level and the external CoverGas
component, or an ambient pressure.

• initial_level (required)

The initial liquid level in this PBLiquidVolume component.

• covergas_component

75

The name of the external CoverGas component, the pressure of which will be used as the reference
pressure in this PBLiquidVolume component. If not specified, PBLiquidVolume takes an ambient
pressure as the reference pressure. To compute the liquid phase pressure, a hydrostatic pressure
head will be added to this reference pressure. The hydrostatic pressure head is calculated as ρgL,
with ρ the liquid density, g=9.81 the gravity constant, and L the liquid level.

• ambient_pressure

If a CoverGas component is not given to provide the reference pressure, an ambient pressure is
then needed as the reference pressure. The default value is 1 bar (105 Pa).

4.3.27 CoverGas

CoverGas component is always used together with PBLiquidVolume component, see figure 4.12
(b). It models a 0-D gas volume that is connected to one or multiple liquid volumes. The gas volume
is modeled as an ideal gas, and the heat transfer between the cover gas and the liquid volumes is
neglected. Its volume change is decided by the volume changes of all connecting liquid volumes.

[./ CoverGas]
coupled_liquid_volume = 0 # If the connected liquid volume is coupled with

an external app.
g = 9.81 # gravity acceleration constant
gamma = 1.66667 # gamma value (cp/cv)
initial_P = (required) # Initial pressure in the gas
initial_T = (required) # Initial temperature in the gas
initial_Vol = (required) # Initial volume of the cover gas
n_liquidvolume = (required) # Number of connecting liquid volumes
name_of_liquidvolume = (required) # liquid volumes names

[../]

• initial_P (required) and initial_T (required)

The initial pressure and temperature of the gas phase.

• initial_Vol (required)

The initial volume of the gas phase.

• n_liquidvolume (required)

Number of connected liquid volumes.

• name_of_liquidvolume (required)

A list of names of connected PBLiquidVolume components. The total number of these connected
PBLiquidVolume components has to be the same as n_liquidvolume. The changes of the liquid
volume in these connected PBLiquidVolume will be used to determine the gas phase volume in
this CoverGas component, consequently, its pressure.

• gamma

Gamma value to be used in the ideal gas equation of state that computes the gas phase pressure as
its volume changes. The default value is 1.66667.

76

• coupled_liquid_volume

This input parameter specifies if the connected liquid volume is coupled with an external app. The
default value is false.

• g

Gravity acceleration constant. The pressure difference between the gas phase and its connected
PBLiquidVolume liquid phase is ρgL, with ρ the liquid density, g the gravity acceleration con-
stant, and L the liquid level in PBLiquidVolume component.

4.3.28 PBPump

PBPump is another special junction component, and it simulates a pump, in which the pump
head can be dependent on a pre-defined function, or can be automatically adjusted to match user-
specified mass flow rate. It inherits from the PBBranch component, and therefore assumes the
volume of the pump is neglectable. More complex pump models will be developed in future SAM
enhancements. Pumping power can be modeled and considered in the energy conservation of the
junction.

Its input parameters are listed as follows:
[./ PBPump]

Area = (required) # See PBBranch
K = (required) # See PBBranch
K_B = (no_default) # See PBBranch
K_B_reverse = (no_default) # See PBBranch
K_C = (no_default) # See PBBranch
K_C_reverse = (no_default) # See PBBranch
K_reverse = (no_default) # See PBBranch
eos = (required) # See PBBranch
initial_P = (no_default) # See PBBranch
initial_T = (no_default) # See PBBranch
initial_V = (no_default) # See PBBranch
inputs = (no_default) # See PBBranch
joint_model = 1 # See PBBranch
nodal_Tbc = 0 # See PBBranch
outputs = (no_default) # See PBBranch
scale_factors = '1 1 1e-06' # See PBBranch

Head = 0 # Pump head
Head_fn = (no_default) # Name of the pressure head function
pump_heating = 0 # if pump heating is included in the energy conservation

Desired_mass_flow_rate = (no_default) # The desired mass flow rate of the pump.
flow rate and the desired one.

Mass_flow_rate_tolerance = 0.0001 # Relative tolerance between the pump delivered
mass flow rate and the desired one.

Response_interval = 1 # The time interval between two consecutive pump
head adjustments.

[../]

• Head

This input parameter specifies the pump head value, in [Pa]. The default value is 0.

• Head_fn

This input parameter specifies the function name to compute pump head value.

77

• pump_heating

This input parameter specifies if pump heating effect should be considered in energy balance. The
default is false.

• Desired_mass_flow_rate

This input parameter accepts a user-specified mass flow rate, such that the pump will automati-
cally adjust the pump head to match this value. If specified, the pump head specified in the Head

input parameter is used as the initial guessing value to start with the automatical adjustment.

• Mass_flow_rate_tolerance

When a user-specified mass flow rate is given, this input parameter the absolute relative tolerance
between the real pump mass flow rate compared with the user-specified one. If within this tol-
erance, the pump stops to adjust its pump head as it is deemed that the desired mass flow rate
already achieved. The default value is 10-4.

• Response_interval

When a user-specified mass flow rate is given, this input parameter specifies the how fast, i.e., the
time internal between two consecutive pump head adjustments. The default value is 1 second.

4.3.29 StagnantVolume

StagnantVolume models a stagnant liquid volume, which has no connections to 1-D fluid com-
ponents but is allowed to connect to a 0-D volume or 1-D or 2-D heat structures for heat transfer.
It is assumed that there is no net mass transfer between StagnantVolume and the connecting 0-D
volumes. Its input parameters are listed as follows:

[./ StagnantVolume]
center = (required) # geometric center of the volume
coupled_volume = (no_default) # Coupled volume component name
eos = (required) # The name of equation of state object to use.
height = (no_default) # Height of the component
initial_T = (required) # initial temperature of the component
mass_flow = 0. # Function name for the exchanged flow between volumes
orientation = '0 0 1' # Orientation vector of the component
position = '0 0 0' # Origin (start) of the component
rotation = 0 # Rotation of the component (in degrees)
volume = (required) # Volume of the component
width = (no_default) # Width of the component

[../]

• center (required)

The geometric center of the volume. It overrides the values given in position (if ever specified),
and is used to generate mesh for display purpose.

• eos (required)

The name of equation of state object to use.

• initial_T (required)

The initial fluid temperature of the component.

78

• height and width

These input parameters specify the height and width of the component, both of which are to be
used to generate mesh for display purpose. The default value for both parameters are 1 m.

• coupled_volume

The name of coupled volume, e.g., another StagnantVolume, which this StagnantVolume compo-
nent exchanges energy with. The energy exchange between these two volumes is computed as
ṁc̄p∆T , in which ṁ is the mixing mass flow rate (see mass_flow), c̄p is the specific heat com-
puted at the average temperature between the two mixing volume, ∆T the temperature difference
between the two mixing volume.

• mass_flow

If a coupled volume is specified, this input parameter specifies the mixing mass flow rate between
the two mixing volume. It can be either a number or a function name.

• orientation, position, and rotation

Parameters not used.

4.3.30 LiquidTank

The LiquidTank component of SAM simulates a PBVolumeBranch (or PBLiquidVolume) and
the heat structure (modeled as PBCoupledHeatStructure) attached to it in order to capture this addi-
tional thermal inertia. The input parameters of the LiquidTank component requires those to describe
the PBVolumeBranch (or PBLiquidVolume) and those to describe the PBCoupledHeatStructure at-
tached to it.

The LiquidTank component automatically create a PBLiquidVolume component, if a CoverGas
component is connected to determine its gas phase pressure; otherwise, a PBVolumeBranch com-
ponent is create. It assumes that the PBVolumeBranch (or PBLiquidVolume) is connected to the
left-side surface of PBCoupledHeatStructure, and additional boundary condition input parameters
are required for the right-side surface of PBCoupledHeatStructure.

The list of input parameters are given in the following list. Part of them are required to de-
scribe the PBVolumeBranch (or PBLiquidVolume) component, which could be referred to section
4.3.24 (or section 4.3.26); and part of them are required to describe the PBCoupledHeatStructure
component, which could be referred to section 4.3.12.

[./ LiquidTank]
Area = (required) # See PBVolumeBranch (PBBranch)
K = (required) # See PBVolumeBranch (PBBranch)
Steady = 0 # See PBVolumeBranch
center = (required) # See PBVolumeBranch
display_pps = 0 # See PBVolumeBranch
eos = (required) # See PBVolumeBranch
height = (no_default) # See PBVolumeBranch
initial_P = (no_default) # See PBVolumeBranch (PBBranch)
initial_T = (no_default) # See PBVolumeBranch (PBBranch)
initial_V = (no_default) # See PBVolumeBranch (PBBranch)
inputs = (no_default) # See PBVolumeBranch
rotation = 0 # See PBVolumeBranch
scale_factors = '1 1 1e-06' # See PBVolumeBranch
volume = (required) # See PBVolumeBranch

79

width = (no_default) # See PBVolumeBranch
nodal_Tbc = 1 # See PBVolumeBranch (PBBranch)
orientation = '0 0 1' # See PBVolumeBranch
outputs = (no_default) # See PBVolumeBranch
position = '0 0 0' # See PBVolumeBranch

HS_BC_type_right = (required) # See HS_BC_type of PBCoupledHeatStructure
HT_surface_area_density_right = (no_default) # See PBCoupledHeatStructure
Hw = (no_default) # See Hw_left of PBCoupledHeatStructure
Hw_right = (no_default) # See PBCoupledHeatStructure
T_amb_right = 300 # See PBCoupledHeatStructure
T_bc_right = 600 # See PBCoupledHeatStructure
Ts_init = (no_default) # See PBCoupledHeatStructure
dim_hs = 2 # See PBCoupledHeatStructure
elem_number_axial = 1 # See PBCoupledHeatStructure
elem_number_radial = (required) # See PBCoupledHeatStructure
heat_source_solid = 0 # See PBCoupledHeatStructure
heat_transfer_area = (no_default) # See heat_transfer_area_left

of PBCoupledHeatStructure
heat_transfer_area_right = (no_default) # See PBCoupledHeatStructure
hs_names = (no_default) # See PBCoupledHeatStructure
hs_type = cylinder # See PBCoupledHeatStructure
length = (required) # See PBCoupledHeatStructure
material_hs = (required) # See PBCoupledHeatStructure
name_comp_right = (no_default) # See PBCoupledHeatStructure
qs_right = (no_default) # See PBCoupledHeatStructure
radius_i = (no_default) # See PBCoupledHeatStructure
width_of_hs = (required) # See PBCoupledHeatStructure

initial_level = (no_default) # See PBLiquidVolume
covergas_component = (no_default) # See PBLiquidVolume

mesh_disp_gap = 0.1 # Axial offset for mesh generation
[../]

Some details of the input parameters as discussed as follows.

• mesh_disp_gap

This input parameter specifies mesh offset in the y-direction, with respect to the fluid component
mesh, when creating heat structure meshes. The default value for this parameter is 0.1 [m]. If
‘cylinder‘ is specified for hs_type, this mesh offset value will be overridden by half of radius_i
value.

4.3.31 ReactorCore

The ReactorCore component describes a pseudo three-dimensional reactor core by connecting
bypass channels to their neighboring core channels (with duct walls). Its input parameters are listed
below.
[./ ReactorCore]

n_bypasschan = (required) # Number of BypassChannels
n_corechan = (required) # Number of CoreChannels
name_of_bypasschan = (required) # BypassChannel names
name_of_corechan = (required) # CoreChannel names

[../]

• n_bypasschan (required)

The total number of bypass channels in this ReactorCore component.

80

• n_corechan (required)

The total number of core channels in this ReactorCore component.

• name_of_bypasschan (required)

The names of all bypass channels.

• name_of_corechan (required)

The names of all core channels.

4.3.32 SurfaceCoupling

The SurfaceCoupling component models the heat transfer between two solid surfaces, suitable
for radiation heat transfer or gap heat transfer between them.

[./ SurfaceCoupling]
area_ratio = 1 # Area ratio between the two surfaces
coupling_type = RadiationHeatTransfer(required) # Heat transfer coupling type
eos = (no_default) # The name of EOS to use
epsilon_1 = 1 # Surface 1 emissivity
epsilon_2 = 1 # Surface 2 emissivity
h_gap = (no_default) # gap conductance
length = (no_default) # gap length
radius_1 = (no_default) # Surface 1 radius
surface1_name = (required) # The name of the Surface 1
surface2_name = (required) # The name of the Surface 2
use_displaced_mesh = 1 # Whether or not this object should use the

displaced mesh for computation.
view_factor = 1 # View factor from surface master (1) to

surface slave (2)
width = (no_default) # gap width

[../]

• surface1_name (required) and surface2_name (required)

The name of surface 1 (2) that participates in the radiation or gap heat transfer.

• coupling_type (required)

The heat transfer mechanism type of the heat transfer, either ‘RadiationHeatTransfer’ for radia-
tion heat transfer, or ‘GapHeatTransfer’ for gap heat transfer. The default value is ‘Radiation-
HeatTransfer’.

• area_ratio

The ratio of surface 1 area to surface 2 area, which is only required for radiation heat transfer to
compute the heat flux between the two surfaces. If not specified, the default value is 1.

• radius_1

The radius of surface 1, if surface 1 is of cylindrical type.

• epsilon_1 and epsilon_2

The emissivity of surface 1 (2), only required for radiation heat transfer mechanism. Both param-
eters have the same default value 1.

81

• view_factor

This parameter defines the view factor between surfaces 1 and 2, only required for radiation heat
transfer mechanism. The default value is 1.

• h_gap

For gap heat transfer mechanism, if user-specified value is desired for the gap heat transfer coef-
ficient, this input parameter specifies such a value. If not specified, SAM will compute the gap
heat transfer coefficient from other input parameters.

• eos

The equation of state that will be used to compute gap heat transfer coefficient, only required when
the heat transfer mechanism is gap heat transfer, and when user-specified heat transfer coefficient
is not given.

• width and length

Gap width (length), only required when the heat transfer mechanism is gap heat transfer, and
when user-specified heat transfer coefficient is not given.

• use_displaced_mesh

This parameter specifies that if displaced mesh to be used. The default value is true, and it is safe
to use this default value.

4.3.33 ReactorPower

ReactorPower is a non-geometric component for describing the total reactor power, which can
be dependent on either user-defined functions (such as describing the decay heat curve), or com-
puted externally from SAM’s PointKinetics component (see section 4.3.34). The total reactor power
variable is used in core components such as PBCoreChannel and PBBypassChannel.

[./ ReactorPower]
initial_power = (required) # Initial total power
initial_fission_power = (no_default) # Initial prompt fission power
power_history = (no_default) # function name for power
enable_decay_heat = (no_default) # Indicate whether to employ decay

heat model for stationary fuel
isotope_fission_fraction = (no_default) # A vector of length four , containing fractions

of all fissions from U-235, U-238,
Pu -239, and Pu -241.

operating_power = (no_default) # operating power used to initialize decay heat
decay_heat = (no_default) # Function (name) that provides decay heat curve
decay_heat_channel_name = (no_default) # Define the channel/bypass names with decay

heat curves
pke = (no_default) # The name of the point kinetics component that

computes reactor power
[../]

• initial_power (required)

This is the total power at the initial time. When initial fission power is absent, and decay heat
calculation is requested. This parameter is also used to calculate the initial fission power.

82

• initial_fission_power (required)

This is the (prompt) fission power at the initial time. This is used to initialize the fission power
calculation using PKE. If the decay heat calculation is requested, this term, if present, will be used
to calculate the initial power, i.e., to replace the value read from the initial power.

• power_history (required)

This takes the name of a time-dependent power function. The power function will be multiplied
by the initial power to calculate the power at a given time, and the decay heat model and the point
kinetic model would not be used.

• enable_decay_heat (required)

This boolean parameter is used to indicate whether to calculate the decay heat for stationary fuel.
If this parameter is absent, the default is false.

• isotope_fission_fraction (required)

This parameter is required when enable decay heat is true. The format of the input is a vector of
size four. It indicates what fractions of all fissions in the reactor are coming from U-235, U-238,
Pu-239, and Pu-241.

• operating_power

This is the power history before t = 0 of the problem. It has to be a constant in the current
implementation. It is used to initialize the decay heat at t = 0. When this parameter is not present
while decay heat calculation in demanded, the initial power will be used for initializing the decay
heat.

• decay_heat

If a decay heat curve is to be used to compute the reactor power, this input parameter specifies the
decay heat curve function name.

• decay_heat_channel_name

This input parameter specifies the core channel and/or bypass channel names with decay heat
curves.

• pke

This parameter takes the name of a PointKinetics component. If this parameter is present, the
point kinetic equation will be used to solve the fission power as a function of time.

4.3.34 PointKinetics

The PointKinetics component is the build-in point kinetics model of SAM, which models the
transient behaviors of reactor fission power, delayed-neutron precursors, as well as reactivity feed-
back from other components, e.g., core channels. In case of modeling molten-salt reactors, where
drifting delayed neutron precursors effect cannot be ignored, PointKinetics component also take
account into the net flow in (out) effect as an additional source (sink) term. The net flow in (out)
effect is captured in a coupled PBMoltenSaltChannel component.

83

[./ PointKinetics]
Initial_DNP_value = (no_default) # Define the initial value for delay

neutron precursor
LAMBDA = (required) # Prompt neutron lifetime
Moving_DNP_bypass_channels = (no_default) # Define the bypass channels for moving

delay neutron precursor
Moving_DNP_name = (no_default) # Define the moving delay neutron

precursor names
betai = (required) # Delay neutron fraction for group

i
core_radial_expansion_reactivity_coefficients = (no_default) # Core radial expansion

reactivity coefficients
(delta_k / k per kg)

core_radial_expansion_reactivity_feedback = 0 # Enable core radial expansion
reactivity feedback.

core_radial_expansion_weights = (no_default) # Weights for core constraint
system on the radial expansion
reactivity.

core_radial_thermal_expansion_coefficient = (no_default) # Thermal expansion
coefficients for
core constraint system
at different locations.

coupled_radial_displacements_pps = (no_default) # coupled radial displacements for
radial expansion reactivity.

coupled_radial_temperatures_pps = (no_default) # coupled temperature for radial
expansion reactivity.

feedback_components = (no_default) # Components which have Thermal
-Hydraulics feedback on reactivity

feedback_start_time = 0 # The time that the reactivity
feedback starts.

lambda = (required) # Delay neutron precursor
decay constant

n_radial_constraint_system = (no_default) # Number of radial constraint system
for core radial expansion reactivity
feedback.

rho_fn_name = (no_default) # External reactivity (delta k per
k)

use_external_radial_displacement = 0 # Enable coupled radial displacement
from external thermo -mechanical
module.

[../]

• Delay_neutron_precursor_name (required)

This input parameter specifies a list of names for delayed neutron precursors.

• Initial_DNP_value

This input parameter specifies a list of initial values for delayed neutron precursor populations.
The total number of list values have to be the same as the total number of delayed neutron pre-
cursor names. However, if not specified, delayed neutron precursor populations are initialized
as:

Ci,initial =
βi

Λλi

in which, βi is the delayed neutron precursor fraction for group i (see betai), Λ the prompt neutron
lifetime (see LAMBDA), λi the delayed neutron precursor decay constant for group i (see lambda).

• LAMBDA (required)

This input parameter specifies the prompt neutron lifetime.

84

• lambda (required)

This input parameter specifies a list of decay constants for delayed neutron precursors. The total
number of list values have to be the same as the total number of delayed neutron precursor names.

• betai (required)

This input parameter specifies a list of delayed neutron precursor fractions. The total number of
list values have to be the same as the total number of delayed neutron precursor names.

• Normalized_fission_power (required)

This input parameter specifies the name of the normalized fission power variable.

• rho_fn_name

This input parameter specifies the function name to introduce an external reactivity, additional to
those from reactor feedbacks, to the PointKinetics model. If not specified, this external reactivity
is 0.

• feedback_components

Besides external reactivity function, the other main reactivity feedback mechanism is thermal-
hydraulics feedback from reactor core channel components. This input parameter specifies a list
of components from which reactivity feedback will be computed.

• feedback_start_time

The time that reactor core channel components start to compute reactivity feedback. The default
value is 0 second.

• core_radial_expansion_reactivity_feedback

This input parameter specifies if core radial expansion reactivity feedback should be modeled.
The default value is false. If modeled, the total reactivity feedback due to core radial expansion is
computed as,

∆Rradialexpansion =
N

∑
i=1

(
∆L
L

)
i
wiρi

in which,

N is the the total number of radial sections to compute reactivity feedback;
see n_radial_constraint_system.

(∆L/L)i is the radial core displacement value in the i-th radial section;

wi is the weight value of the i-th radial section; see core_radial_expansion_weights.

ρi is core radial expansion coefficient at the i-th radial section;
see core_radial_expansion_reactivity_coefficients.

85

Currently, SAM provides two ways to model core radial expansion, i.e., a simple built-in function
or coupled from external simulations. The simpler one is a built-in function, which computes the
i-th radial expansion as, (

∆L
L

)
i
= αi (Ti−T0,i)

in which,

αi is the thermal expansion coefficient of the constraint structure at the i-th radial section, see
thermal_expansion_coefficient.

Ti is the core temperatures in the i-th radial section;
see coupled_radial_temperatures_pps.

T0,i is the initial, i.e., when reactor core channel components start to compute reactivity feedback,
core temperatures in the i-th radial section.

The radial core displacement can also be modeled from an external code, and then coupled with
SAM to compute the reactivity feedback value (use_external_radial_displacement = true).

• use_external_radial_displacement

This input parameter specifies if core radial displacement should be modeled from an external
simulation and their values are provided as coupled values. The default value is false. If specified
true, externally computed core radial expansion displacement is expected from user input, see
coupled_radial_displacements_pps.

• n_radial_constraint_system

If core radial expansion reactivity feedback is modeled, this input parameter specifies the number
of radial constraint system, i.e., number of core radial sections, for core radial expansion reactivity
feedback.

• core_radial_expansion_reactivity_coefficients

This input parameter specifies a list of core radial expansion reactivity feedback coefficient values.
The total number of this list of values has to be the same as the number of core radial sections
(see n_radial_constraint_system).

• core_radial_expansion_weights

This input parameter specifies a list of values for core radial expansion reactivity feedback weights.
The total number of this list of values has to be the same as the number of core radial sections
(see n_radial_constraint_system).

• thermal_expansion_coefficient

If radial expansion is modeled used SAM’s built-in function, this input parameter specifies a
list of thermal expansion coefficients to compute radial core displacement values. The total
number of this list of values has to be the same as the number of core radial sections (see
n_radial_constraint_system).

• coupled_radial_temperatures_pps

86

If radial expansion is modeled used SAM’s built-in function, this input parameter specifies a
list of Postprocessor names that compute core temperatures in each radial section. The to-
tal number of this list of names has to be the same as the number of core radial sections (see
n_radial_constraint_system).

• coupled_radial_displacements_pps

If core radial displacement should be modeled from an external simulation and their values are
provided as coupled values, this input parameter specifies a list of Postprocessor names that com-
pute core radial displacement at each radial section. The total number of this list of names has to
be the same as the number of core radial sections (see n_radial_constraint_system).

• Moving_DNP_bypass_channels

If drifting delayed neutron precursors effect should be considered, this input parameter specifies
the PBMoltenSaltChannel component name, from which the net flow in (out) of drifting delayed
neutron precursors are computed.

• Moving_DNP_name

If drifting delayed neutron precursors effect should be considered, this input parameter specifies
the names of these delayed neutron precursors.

4.3.35 ReferenceBoundary

ReferenceBoundary component provides a fixed value boundary condition to a one-dimensional
fluid type of component. This boundary condition can be applied to normal flow parameters, such
as pressure, velocity, and temperature, as well as scalar variables.
[./ ReferenceBoundary]

coupled_var = (no_default) # coupled variable at bc
input = (no_default) # Names of the connected components
value = (no_default) # Given variable value on boundary
variable = (required) # variable to be set at bc

[../]

• input

This input parameter specifies where this boundary condition should be applied, e.g., input =

‘pipe-1(in)’.

• variable (required)

This input parameter specifies which variable this boundary condition should be applied, e.g.,
variable = pressure. In principle, this can be any field variable, but pressure is commonly used
to setup the system reference pressure.

• value

This input parameter specifies the value to be applied to the variable in this boundary condition.

• coupled_var

This input parameter specifies a coupled variable, whose value is to be applied to the variable in
this boundary condition.

87

4.3.36 PipeChain

PipeChain is a non-geometric component for sequentially connecting a number of fluid compo-
nents. It automatically generates the needed PBSingleJunction components between the specified
fluid components. The purpose of this component for user friendliness.

There are only two input parameters required for this component:

• eos (required)

Equation of state to be used for all automatically-generated PBSingleJunctions.

• component_names

This input parameter specifies a list of N sequentially connected fluid components, and N − 1
PBSingleJunctions will be automatically generated to connect them.

4.3.37 ChannelCoupling

ChannelCoupling is a non-geometric component for coupling two 1-D fluid components (with
energy exchange). It is intended to model the flow mixing between two parallel channels.

[./ ChannelCoupling]
beta = (required) # turbulent mixing parameter
eos = (required) # The name of EOS to use
gap_width = (required) # The gap width
pipe1_name = (no_default) # The name of the Pipe 1
pipe2_name = (no_default) # The name of the Pipe 2
var_scaling_factor = 0.001 # turbulent mixing flux variable scaling factor

[../]

• pipe1_name and pipe2_name

The names of the two pipes where this flow mixing is happening.

• eos (required)

Equation of state to be used in this ChannelCoupling component.

• gap_width (required)

Gap width between the two pipes where this flow mixing is happening.

• beta (required)

This input parameter specifies the turbulent mixing coefficient value to be used to compute the
inter-channel mass flux due to turbulent mixing, which will then be used to compute the inter-
channel energy flux due to turbulent mixing.

• var_scaling_factor

This input parameter specifies the scaling factor for the variable for computing the inter-channel
mass flux due to turbulent mixing.

88

4.3.38 HeatPipe

The HeatPipe component is used to model a conventional 3-zone cylindrical heat pipe, see
Figure 4.13. Along the axial direction, the heat pipe is divided to 3 zones: evaporator, adiabatic, and
condenser. Along the radial direction, the heat pipe consists of vapor core, wick, and wall blocks.
In the current SAM modeling of the heat pipe, phase transition of the fluid is not considered. The
vapor core is modeled as a perfect conductor with high thermal conductivity. This approximation
is based on the fact that the thermal resistance in the vapor core is small under normal operation
conditions.

Heat Input

Evaporator

Heat Output

CondenserAdiabatic

Wick
Vapor core

Wall

Vapor flow Liquid return

Figure 4.13: Sketch of a conventional 3-zone cylindrical heat pipe

HeatPipe is directly inherited from the base HeatStructure component. The side surface of
the heat structure is modified to add the evaporator, adiabatic, and condenser wall outer surface.
Boundary conditions are controlled at the evaporator and condenser wall outer surfaces, such as
adiabatic, fixed temperature, convective heat transfer with ambient, coupled with 0-D liquid volume
or 1-D liquid component, and gap heat transfer coupled with a solid surface.

The majority of boundary condition options of HeatPipe emulate that of PBCoupledHeatStruc-
ture, see section 4.3.12. Most input parameters of HeatPipe are inherited from the base Heat-
Structure component, see section 4.3.2, and additional input parameters are required to setup its
evaporator(condenser) boundary conditions. The complete input parameters of HeatPipe are listed
below:

[./<HeatPipe >]
offset = '0 0 0' # see HeatStructure
orientation = '0 0 1' # see HeatStructure
position = '0 0 0' # see HeatStructure
power_fraction = (no_default) # see HeatStructure
Ts_init = (no_default) # see HeatStructure
hs_names = (no_default) # see HeatStructure
heat_source_solid = 0 # see HeatStructure
hs_power = (no_default) # see HeatStructure
hs_power_shape_fn = (no_default) # see HeatStructure

length = (required) # Total axial length
elem_number_radial = (required) # Radial elements of each block
elem_numbers_axial = (required) # Axial elements of each zone

89

material_hs = (required) # Material name of each block
width_of_hs = (required) # Width of each radial block
zone_lengths = (required) # Length of each axial zone
elem_number_axial = 1 # Will be ignored by HeatPipe
hs_type = (no_default) # Geometry type: MUST be cylinder
dim_hs = 2 # Dimension: MUST be 2D
radius_i = 0 # Default value of 0 should be used

depth_plate = (no_default) # Not used for HeatPipe.
axial_offset = 0 # Not used for HeatPipe.
end_elems_refinement = 1 # Not used for HeatPipe.
HT_area_multiplier_left = 1 # Not used for HeatPipe
HT_area_multiplier_right = 1 # Not used for HeatPipe

HP_BC_type = 'NONE NONE' # Boundary condition types for evaporator
and condenser wall.

HT_surface_area_density_cond = 1 # Heat transfer surface area density at
condenser surface

HT_surface_area_density_evap = 1 # Heat transfer surface area density at
evaporator surface

D_heated_cond = (no_default) # Characteristic heated length at
condenser surface

D_heated_evap = (no_default) # Characteristic heated length at
evaporator surface

HTC_geometry_type_cond = Pipe # Heat transfer geometry type at
condenser surface

HTC_geometry_type_evap = Pipe # Heat transfer geometry type at
evaporator surface

Hw_cond = (no_default) # Convective HTC at condenser surface
Hw_evap = (no_default) # Convective HTC at evaporator surface
T_amb_cond = 300 # Condenser ambient temperature
T_amb_evap = 300 # Evaporator ambient temperature
T_bc_cond = 600 # Fixed Temperature BC at condenser surface
T_bc_evap = 600 # Fixed Temperature BC at evaporator surface
T_external_cond = (no_default) # Coupled variable for external temperature at

condenser surface
T_external_evap = (no_default) # Coupled variable for external temperature at

evaporator surface
h_external_cond = (no_default) # Coupled variable for external HTC at

condenser surface
h_external_evap = (no_default) # Coupled variable for external HTC at

evaporator surface
eos_cond = (no_default) # The name of EOS to use for condenser surface
eos_evap = (no_default) # The name of EOS to use for evaporator surface
heat_transfer_area_cond = 1 # Convective heat transfer area at

condenser surface
heat_transfer_area_evap = 1 # Convective heat transfer area at

evaporator surface
name_comp_cond = (no_default) # Liquid volume connected to condenser surface
name_comp_evap = (no_default) # Liquid volume connected to evaporator surface
qs_cond = (no_default) # Heat flux at the condenser surface
qs_evap = (no_default) # Heat flux at the evaporator surface
qs_external_cond = (no_default) # Coupled variable for external heat flux at

condenser surface
qs_external_evap = (no_default) # Coupled variable for external heat flux at

evaporator surface

gap_surface_name_cond = (no_default) # Copuled master surface name for gap heat

90

transfer in the condenser surface
gap_surface_name_evap = (no_default) # Copuled master surface name for gap heat

transferin the evaproator surface
h_gap_cond = (no_default) # Gap conductance for condenser surface
h_gap_evap = (no_default) # Gap conductance for evaporator surface
length_cond = (no_default) # Gap length for condenser surface
length_evap = (no_default) # Gap length for evaporator surface
width_cond = (no_default) # Gap width for condenser surface
width_evap = (no_default) # Gap width for evaporator surface

[../]

The explanation of most input parameters inherited from HeatStructure is discussed in section 4.3.2.
The remaining input parameters are explained below:

• length (required)

Total axial length of the heat pipe.

• elem_number_radial (required)

The vector of radial elements for the vapor, wick, and wall blocks of the heat pipe.

• elem_numbers_axial (required)

The vector of axial elements for the 3 zones (evaporator, adiabatic, and condenser) of heat pipe.
The summation of elements in each zone is the total number of elements in the axial direction.
The input parameter “elem number axial” will be ignored. Warning: notice the minor difference
between “elem numbers axial” and “elem number axial”.

• material_hs (required)

The name of materials for the vapor core, wick, and wall blocks.

• width_of_hs (required)

The width of vapor core, wick, and wall blocks.

• zone_lengths (required)

The length of evaporator, adiabatic, and condenser zones. Notice that non-uniform mesh sizes are
possible for different axial zones.

• hs_type

The geometry type of a heat pipe must be “cylinder”.

• HS_BC_type (required)

This input parameter specifies the two boundary condition types for the evaporator and condenser
surface of HeatPipe component. Input options include “Temperature”, “Convective”, “Coupled”,
and “GapHeatTransfer”.

If “Temperature” is specified, a Dirichlet type of boundary conditions is used, and it expects an
additional user-input for the boundary condition temperature, see T_bc_evap(cond).

If “Convective” is specified, a wall heat flux will be used. The wall heat flux could be directly
specified, see qs_evap(cond). It is also possible to compute the wall surface flux by providing

91

ambient temperature (see T_amb_evap(cond)) and heat transfer coefficient to the ambient (see
Hw_evap(cond)).

In code coupling computation situations, wall heat flux boundary conditions could be calculated
from an external code. Corresponding to the two conditions discussed above, one could specify
an externally calculated wall heat flux, see qs_external_evap(cond); or a combination of external
temperature and wall heat transfer coefficient, see T_external_evap(cond) and h_external_evap(cond).

If “Coupled” is specified, still a wall heat flux will be used, but the fluid temperature comes
from a neighboring component, either a PBVolumeBranch or a PBOneDFluidComponent, see
name_comp_evap(cond). Heat transfer coefficient to the coupled component can be specified in
Hw_evap(cond), and if not specified, they will be automatically computed.

If “GapHeatTransfer” is specified, the evaporator/condenser surface will be coupled with other
solid surface through gap heat transfer. The name of the coupled surface is specified with the
input parameter gap_surface_name_evap(cond). The parameters related to the gap conductance
are specified with h_gap_evap(cond), length_evap(cond), and width_evap(cond).

• T_bc_evap and T_bc_cond

If the evaporator/condenser boundary condition type is “Temperature”, it accepts the value (or a
function) for the evaporator/condenser boundary condition temperatures. The default values are
600 K.

• qs_evap and qs_cond

If the evaporator/condenser boundary condition type is “Convective”, it accepts the value (or a
function) for the evaporator/condenser wall heat flux as boundary conditions.

• T_amb_evap and T_amb_cond; Hw_evap and Hw_cond

If the evaporator/condenser boundary condition type is “Convective”, T_amb_evap(cond)) spec-
ifies the ambient temperature, and Hw_evap(cond)) specifies the wall heat transfer coefficient to
compute the wall heat flux. Both of these inputs could be either values or function names. The
default value for T_amb_evap(cond) is 300 K.

• qs_external_evap and qs_external_cond

If the evaporator/condenser boundary condition type is “Convective”, it accepts the variable name
for externally computed evaporator/condenser wall heat flux as boundary conditions.

• T_external_evap and T_external_cond; h_external_evap and h_external_cond

If the evaporator/condenser boundary condition type is “Convective”, T_external_evap(cond)

specifies an externally computed ambient temperature, and h_external_evap(cond) specifies an
externally computed wall heat transfer coefficient to compute the wall heat flux. Both of these
inputs have to be specified as coupled “variables”.

• name_comp_evap and name_comp_cond

If the evaporator/condenser boundary condition type is “Coupled”, it accepts the name of the com-
ponent coupled to the evaporator(condenser) surface of this HeatPipe component. The coupled
component has to be either a PBVolumeBranch or a PBOneDFluidComponent.

92

• eos_evap and eos_cond

Only when the evaporator/condenser boundary condition type is “Coupled”, and the coupled com-
ponent is of PBVolumeBranch type, it is required to specify the name of equation of state to the
evaporator/condenser coupled PBVolumeBranch component.

• D_heated_evap and D_heated_cond

Only when the evaporator/condenser surface boundary condition type is “Coupled”, and the cou-
pled component is of PBOneDFluidComponent type, it specifies the characteristic length to com-
pute wall heat transfer coefficient in the coupled evaporator/condenser PBOneDFluidComponent
component. If not specified, the coupled PBOneDFluidComponent uses its hydraulic diameter as
the characteristic length for heat transfer.

• HTC_geometry_type_evap and HTC_geometry_type_cond

Heat transfer geometry type at the evaporator/condenser surface. Acceptable options are “Pipe
(default)”, “Bundle”, “Vertical-Plate”, and “Horizontal-Plate”.

• HT_surface_area_density_evap and HT_surface_area_density_cond

Only when the evaporator/condenser surface boundary condition type is “Coupled”, and the cou-
pled component is of PBOneDFluidComponent type, it specifies the heat transfer surface area
density of this HeatPipe component with respect to the coupled evaporator/condenser surface
PBOneDFluidComponent component.

• heat_transfer_area_evap and heat_transfer_area_cond

Only when the evaporator/condenser boundary condition type is “Coupled”, and the coupled com-
ponent is of PBVolumeBranch type, it specifies the evaporator/condenser side heat transfer sur-
face area of this HeatPipe component. Since the HeatPipe component assumes normal cylinder
geometry, the heated perimeter will be the perimeter of the cylinder.

• gap_surface_name_evap and gap_surface_name_cond

When the evaporator/condenser surface boundary condition type is “GapHeatTransfer”, these pa-
rameters specify the name of the surface that is coupled with the evaporator/condenser surface
through gap heat transfer.

• h_gap_evap and h_surface_name_cond

When the evaporator/condenser surface boundary condition type is “GapHeatTransfer”, these pa-
rameters specify the constant thermal conductance in the gap.

• length_evap, length_cond, width_evap, and width_cond. When the evaporator/condenser surface
boundary condition type is “GapHeatTransfer”, these parameters specify the geometry parameter
for the gap. The code will calculate the thermal conductance based on the gap geometry.

An example of defining a heat pipe component is listed as below:

[./hp]
type = HeatPipe
position = '0 0 0'
orientation = '0 0 1'
hs_type = cylinder

93

length = 1
zone_lengths = '0.3 0.4 0.3'
width_of_hs = '0.04 0.005 0.005'
elem_number_radial = '2 4 4'
elem_numbers_axial = '6 8 6'
dim_hs = 2
material_hs = 'vapor -mat wick -mat ss-mat'
Ts_init = 628.15
HP_BC_type = 'Convective Temperature '
qs_evap = 1.0e5 # Given heat flux at evaporator surface
T_bc_cond = 628.15 # Fixed temperature at condenser surface

[../]

4.3.39 MultiComponentArray

The MultiComponentArray component is used to create an array of identical components in
a compact way based on the reference position vectors. It currently support components of type
HeatPipe, PBOneDFluidComponent, PBPipe, and PBCoupledHeatStructure. The associated input
parameters are shown below.

[./< MultiComponentArray >]
component_type = (required) # type of component
ref_parameter = (required) # reference input parameters for component

array.
positions = (no_default) # Position of the individual component.
positions_file = (no_default) # A filename that should be looked in

for positions. Each set of 3 values
in that file will represent a Point.
This and 'positions ' cannot be both
supplied.

hp_cond_wall_coupled_solid_array = (no_default) # Name of the coupled solid array
for the heat pipe condenser wall.
Coupled through gap heat transfer.

gap_surface_name_cond = (no_default) # Name of coupled solid array surface
for the heat pipe condenser wall.

hp_evap_wall_coupled_solid_array = (no_default) # Name of the coupled solid array for
the heat pipe evaporator wall.
Coupled through gap heat transfer.

gap_surface_name_evap = (no_default) # Name of coupled solid array surface
for the heat pipe evaporator wall.

hp_cond_wall_coupled_fluid_array = (no_default) # Name of the coupled fluid array for
the heat pipe condenser wall. Coupled
through convective heat transfer.

hp_evap_wall_coupled_fluid_array = (no_default) # Name of the coupled fluid array for
the heat pipe evaporator wall. Coupled
through convective heat transfer.

solid_left_wall_coupled_fluid_array = (no_default) # Name of the coupled fluid array for
the left wall of heat structure.
Coupled through convective
heat transfer.

solid_right_wall_coupled_fluid_array = (no_default) # Name of the coupled fluid array for
the right wall of heat structure.
Coupled through convective heat
transfer.

enable_input_helper = 1 # Option to print names of all blocks ,
surfaces , inlets , and outlets.

rotation = 0 # Not used.
input_parameters = (no_default) # Not used.
orientation = '0 0 1' # Not used.
position = '0 0 0' # Not used.

94

[../]

The input parameters are explained below:

• component_type (required)

Specify the type of component in this array. It currently support one of HeatPipe, PBOneDFluid-
Component, PBPipe, and PBCoupledHeatStructure.

• ref_parameter (required)

Specify the reference input parameters for the identical components in this array. The user defines
the reference input parameters in the ComponentInputParameters block.

• positions and positions_file

One of these 2 parameters should be supplied to provide the positions of individual components in
this array. positions and positions_file cannot be both supplied. positions should be provided
with a list of three-dimensional points. positions_file should be provided with a filename that
contains the list of three-dimensional points. The total number of individual components in this
array will be determined by the number of valid points provided by one of these 2 parameters.

The individual components in this array are named as: ArrayName:c1, ArrayName:c2, etc. ‘Ar-
rayName’ is the name of this array.

• hp_cond_wall_coupled_solid_array and gap_surface_name_cond

These 2 optional input parameters work together to specify the coupling between an array of Heat-
Pipe and an array of solid PBCoupledHeatStructure. The coupling is through gap heat transfer
between the heat pipe condenser surface and a user-specified surface name of the PBCoupled-
HeatStructure. hp_cond_wall_coupled_solid_array specifies the name of the solid PBCouled-
HeatStructure array and gap_surface_name_cond specifies which surface (e.g. inner wall and
outer wall) of PBCouledStructure will be coupled with the heat pipe condenser surface.

• hp_evap_wall_coupled_solid_array and gap_surface_name_evap

These 2 optional input parameters work together to specify the coupling between an array of Heat-
Pipe and an array of solid PBCoupledHeatStructure. The coupling is through gap heat transfer
between the heat pipe evaporator surface and a user-specified surface name of the PBCoupled-
HeatStructure. hp_evap_wall_coupled_solid_array specifies the name of the solid PBCouled-
HeatStructure array and gap_surface_name_evap specifies which surface (e.g. inner wall and
outer wall) of PBCouledStructure will be coupled with the heat pipe evaporator surface.

• hp_cond_wall_coupled_fluid_array and hp_evap_wall_coupled_fluid_array

These 2 optional input parameters are used to specify the coupling between an array of HeatPipe
and an array of fluid components (e.g PBOneDFluidComponent). The coupling between the heat
pipe evaporator/condenser surface with the fluid component is through the convective heat trans-
fer. hp_cond_wall_coupled_fluid_array and hp_evap_wall_coupled_fluid_array should be the
name of the array of fluid coupled at the condenser surface and evaporator surface, respectively.

95

• solid_left_wall_coupled_fluid_array and solid_right_wall_coupled_fluid_array

These 2 optional input parameters are used to specify the coupling between an array of PBCouled-
HeatStructure and an array of fluid components (e.g PBOneDFluidComponent). The coupling
between the solid left/right wall with the fluid component is through the convective heat transfer.
solid_left_wall_coupled_fluid_array and solid_right_wall_coupled_fluid_array should be
the name of the array of fluid coupled at the left wall (i.e. inner surface) and right wall (i.e. outer
surface), respectively.

• enable_input_helper

This optional input parameter allows the code print names of blocks, surfaces, inlets, and outlets
in the output (e.g. console print). It is likely that these names will be used in the other blocks of
the input model, e.g. boundary conditions and postprocessors.

An example of using the MultiComponentArray is listed as below:

[ComponentInputParameters]
#---
Specify parameters for the reference heat pipe in an array
The evaporator surface will be supplied with a heat flux , while
the condenser surface will be coupled with fluid through convective
heat transfer.
#---
[./ reference_hp]

type = HeatPipeParameters
orientation = '0 0 1'
hs_type = cylinder
length = 2.0
zone_lengths = '1.3 0.4 0.3'
width_of_hs = '0.015 0.001 0.001 '
elem_number_radial = '2 2 2'
elem_numbers_axial = '26 8 6'
dim_hs = 2
material_hs = 'vapor -mat wick -mat wall -mat'
Ts_init = 750.0

HP_BC_type = 'Convective Coupled '
qs_evap = 1.0e5
name_comp_cond = Pipe:c1
HT_surface_area_density_cond = 340.0
eos_cond = eos

[../]
#---
Specify parameters for the reference fluid pipe in an array
Notice that the fluid is only coupled with the condenser surface.
#---
[./ reference_pipe]

type = PBOneDFluidComponentParameters
orientation = '0 0 1'
eos = eos
heat_source = 0
f = 0.01
length = 0.3
A = 3.141591654e-4
Dh = 0.02
n_elems = 6

[../]
[]

[Components]

96

[./HP]
type = MultiComponentArray
component_type = HeatPipe
positions = '0 0 0 0 1 0'
ref_parameter = reference_hp
hp_cond_wall_coupled_fluid_array = Pipe

[../]
[./ Pipe]

type = MultiComponentArray
component_type = PBOneDFluidComponent
positions = '0 0 1.7 0 1 1.7'
ref_parameter = reference_pipe

[../]
[]

4.4 Control System Components

4.4.1 CTGeneric

CTGeneric is the base class for the control and trip system. It implement the computation logic
of the control and trip components. The associated input parameters are shown below.

[./ CTGeneric]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
[../]

Each of the input parameters are discussed as follows.

• input_names (required)

A vector of input names to this control/trip component. A constant value can be provided as an
input.

• input_types (required)

A vector of input types to this control/trip component. The order and number of the input tyes
should be consistent with that of input names. Available types are: Constant, ScalarVariable,
Function, Postprocessor, ControlSystem, and TripSystem.

• start_time

The start time of this control/trip component. If this parameter is provided, there is no actual
calculation before this time and the initial value of the control/trip component is the output; oth-
erwise, the calculation starts immediately after the creation of the control/trip component.

97

• trigger_trip_name

The name of the triggering trip to this component. If this input parameter is provided, the compu-
tation of this component will be governed by the status of the triggering trip. If the triggering trip
is true, the computation of this component is enabled; otherwise, the output of this component
stays at its old value or initial value if this component has never been calculated.

• initial_output_value

Initial value of this control component. In practice, when the control/trip systems are complicated,
it is difficult to set the accurate initial value; in this case, users may choose not providing the
initial value. This may affect accuracy of computation in the control component, but the effect is
expected to dimish over time.

• actuator

Option to set this control/trip component as an actuator. The actuator component will initiate
the evaluation sequence in a control/trip system. Thus, at least 1 component (usually the most
downstream one) needs to be set as the acutator in a control/trip system. In practice, output of an
actuator component will be used in the fluid system.

• add_output_pps

Option to add a postprocessor for obtaining value of this control/trip component. The added
postprocess is named as ”name:value”, where ”name” is name of the control/trip component.

• add_output_function

Option to add a function for obtaining value of this control/trip component. The added function
is named as ”name:fn”, where ”name” is name of the control/trip component.

• add_output_variable

Option to add a scalar aux variable for obtaining value of this control/trip component. The added
varaible is named as ”name:out”, where ”name” is name of the control/trip component.

4.4.2 ControlSystem

In SAM, ControlSystem is directly inherited from CTGeneric, with the concept to model a con-
trol component. Its input parameters are therefore a superset of input parameters of CTGeneric.
ControlSystem is base class of different type of control components. The associated input parame-
ters are shown below.

[./ ControlSystem]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

98

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
[../]

In addition to the input parameters discussed in 4.4.1, there is one additional input parameter:

• scaling_factor

A constant factor to scale value of the control component.

4.4.3 TripSystem

In SAM, TripSystem is directly inherited from CTGeneric, with the concept to model a trip com-
ponent. Its input parameters are therefore a superset of input parameters of CTGeneric. TripSystem
is base class of different type of trip components. The associated input parameters are shown below.

[./ TripSystem]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
latched = 0 # Whether this trip component is latched.
[../]

In addition to the input parameters discussed in 4.4.1, there is one additional input parameter:

• latched

A boolean option for deciding if this trip is latched or unlatched. If this trip is latched, once set
true, its status and TIMEOF will not change; otherwise, its status and TIMEOF will be evaluated
and advanced every time step.

4.4.4 CSAddition

CSAddition is directly inherited from ControlSystem to calculate summation of input variables,

Y = S(A0 +
N

∑
i=1

AiVi) (4.3)

The associated input parameters are shown below.

[./ CSAddition]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.

99

add_output_pps = 0 # Option to add a pps (name:value) to get value
of this control/trip component.

add_output_function = 0 # Option to add a function (name:fn) to get value
of this control/trip component.

add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get
value of this control/trip component.

scaling_factor = 1 # Constant scaling factor.
bias = 0 # A constant bias to the summation.
gains = (no_default) # Gain factors for individual input variables.
[../]

In addition to the input parameters discussed in 4.4.2, there are two additional input parameters:

• bias

A constant bias to the summation. It corresponds to A0 in Eq. 4.3. If not provided, a default value
of 0.0 is used.

• gains

A vector of gain factor for individual input variables. It corresponds to Ai in Eq. 4.3. The size of
the vector should equal the number of the input variables. If not provided, a default vector of 1.0
is used.

4.4.5 CSDivision

CSDivision is directly inherited from ControlSystem to calculate division of input variables,

Y =
S

V1
or S

V2

V1
(4.4)

It support either one or two input variable(s). If one input variable is provided, its inverse is calcu-
lated. The associated input parameters are shown below.
[./ CSDivision]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
[../]

Other than the input parameters discussed in 4.4.2, there is no additional input parameter.

4.4.6 CSMultiplication

CSMultiplication is directly inherited from ControlSystem to calculate product of input vari-
ables,

Y = S
N

∏
i=1

Vi (4.5)

100

The associated input parameters are shown below.

[./ CSMultiplication]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
[../]

Other than the input parameters discussed in 4.4.2, there is no additional input parameter.

4.4.7 CSExponentiation

CSExponentiation is directly inherited from ControlSystem to calculate power of input vari-
ables,

Y = SV x
1 or SVV2

1 (4.6)

where x is exponent to the power function. It support either one or two input variable(s). If one
input variable is provided, user needs to provide the exponent to the power function. If two input
variables are specified, the second input is taken as exponent to the power function. The associated
input parameters are shown below.

[./ CSExponentiation]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
exponent = (no_default) # Exponent to the power function.
[../]

In addition to the input parameters discussed in 4.4.2, there is one additional input parameter:

• exponent

The exponent to the power function. This is required if only one input variable is provided.

101

4.4.8 CSSTDFunction

CSSTDFunction is directly inherited from ControlSystem to computes one of the standard func-
tion of its input variables,

Y = SF(V1,V2, · · ·) (4.7)

The associated input parameters are shown below.

[./ CSSTDFunction]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
function_type = (required) # The type of the standard function.
loolup_function_name = (no_default) # The name of the loopup function.
[../]

In addition to the input parameters discussed in 4.4.2, there are two additional input parameter:

• function_type (required)

The type of the function. Currently, the function type is one of SIN, COS, TAN, SINH, COSH,
TANH, ABS, LOG, EXP, SQRT, MIN, and MAX. Correspondingly, F would be sin(V1), cos(V1),
tan(V1), sinh(V1), cosh(V1), tanh(V1), |V1|, ln(V1), exp(V1),

√
V1, min(V1,V2, · · ·), and max(V1,V2, · · ·).

Only min and max function may take multiple input variables. The function type is case sensitive.

• loolup_function_name

Name of lookup function. In addition to the previously discussed standard functions, a user-
provided function is also available to this control component. In this case, the user specifies the
function type as LOOKUP and provides name of the lookup function.

4.4.9 CSDelay

CSDelay is directly inherited from ControlSystem to return its input variable after a deleyed time,

Y = SV1(t− td) (4.8)

The associated input parameters are shown below.

[./ CSDelay]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.

102

add_output_pps = 0 # Option to add a pps (name:value) to get value
of this control/trip component.

add_output_function = 0 # Option to add a function (name:fn) to get value
of this control/trip component.

add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get
value of this control/trip component.

scaling_factor = 1 # Constant scaling factor.
delay_time = (required) # The input delay time.
num_pairs = (required) # The number of pairs of data used to store

past values of input variable
[../]

In addition to the input parameters discussed in 4.4.2, there are two additional input parameter:

• delay_time (required)

The delay time to the input variable.

• num_pairs (required)

The maximum number of pairs of history values to store in this component. History of the input
variable is stored in form of (time, value) pair. The deleyed function is obtained by a liner inter-
polation of the stored history value. The ratio of dealy time to the number of pairs is better to be
close to the time step size.

4.4.10 CSUnitTrip

CSUnitTrip is directly inherited from ControlSystem. It returns 0.0 or 1.0 depending on the
input trip status,

Y = SU(±tr) (4.9)

The associated input parameters are shown below.

[./ CSUnitTrip]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
input_complement = 0 # Use complement of the input trip
[../]

In addition to the input parameters discussed in 4.4.2, there is one additional input parameter:

• input_complement

Option to use complement of the input trip.

103

4.4.11 CSDifferentiation

CSDifferentiation is directly inherited from ControlSystem to compute time derivative of its
input variable,

Y = S
dV1

dt
(4.10)

The associated input parameters are shown below.

[./ CSDifferentiation]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
[../]

Other than the input parameters discussed in 4.4.2, there is no additional input parameter.

4.4.12 CSIntegration

CSIntegration is directly inherited from ControlSystem to compute time integral of its input
variable,

Y = S
∫ t

t0
V1dt (4.11)

where t0 is the simulation time when the component is added to the system. The associated input
parameters are shown below.

[./ CSIntegration]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
[../]

Other than the input parameters discussed in 4.4.2, there is no additional input parameter.

104

4.4.13 CSProportionIntegration

CSProportionIntegration is directly inherited from ControlSystem to compute proportional-
integral of its input variable,

Y = S
(

A1V1 +A2

∫ t

t0
V1dt

)
(4.12)

where t0 is the simulation time when the component is added to the system. The associated input
parameters are shown below.

[./ CSProportionIntegration]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
proportion_gain = (required) # Gain factor for the proportion part.
integration_gain = (required) # Gain factor for the integration part.
[../]

In addition to the input parameters discussed in 4.4.2, there are two additional input parameters:

• proportion_gain (required)

The gain factor for the proportion part. It corresponds to A1 in Eq. 4.12.

• integration_gain (required) The gain factor for the integration part. It corresponds to A2 in Eq.
4.12.

4.4.14 CSLeadLag

CSLeadLag is directly inherited from ControlSystem to compute lead-lad operation of its input
variable,

Y (s) = S
(

1+A1s
1+A2s

)
V1(s) (4.13)

where A1 and A2 are the lead and lag time constant, respectively. The associated input parameters
are shown below.

[./ CSLeadLag]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

105

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
scaling_factor = 1 # Constant scaling factor.
lead_time_constant = (required) # Lead time constant.
lag_time_constant = (required) # Lag time constant.
[../]

In addition to the input parameters discussed in 4.4.2, there are two additional input parameters:

• lead_time_constant (required)

The lead time constant. It corresponds to A1 in Eq. 4.13. It can be set to zero, which is equivalent
to a pure lag operation.

• lag_time_constant (required) The lag time constant. It corresponds to A2 in Eq. 4.13. It can be
set to zero, which is equivalent to a pure lead operation.

4.4.15 TSCompare

TSCompare is directly inherited from TripSystem to perform the comparison of its input variables,

Tr =V1OP(V2 +C) (4.14)

where C is a user-specified constant bias and OP is the comparison operator. This component
support either one or two input variables. If only one input variable is provided, the first variable is
compared to the constant bias. The associated input parameters are shown below.

[./ TSCompare]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
latched = 0 # Whether this trip component is latched.
bias = 0 # The bias to the second input.
compare_type = (required) # The type of the comparison operation.
[../]

In addition to the input parameters discussed in 4.4.3, there are two additional input parameter:

• bias

A constant bias to the second input. If not provided, a default value of 0.0 is used.

• compare_type (required)

The type of the comparison. It is one of the following relational operations: EQ (equal), NE (not
equal), GT (greater than), GE (greater then or equal), LT (less than), and LE (less than or equal).

106

4.4.16 TSBoolean

TSBoolean is directly inherited from TripSystem to perform the boolean operation of its input
trip signals,

Tr = Tr,1OPTr,2 (4.15)

where OP is the boolean operator. The associated input parameters are shown below.

[./ TSBoolean]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
latched = 0 # Whether this trip component is latched.
boolean_type = 0 # The type of boolean operation.
[../]

In addition to the input parameters discussed in 4.4.1, there is one additional input parameter:

• boolean_type

The type of the boolean operation. It is one of the logical operations: AND, OR (inclusive or),
NAND (not-and), NOR (not-ro), XOR (exclusive or), and XNOR (exclusive NOR). An extra
operation (NOT) is also available if only 1 input is specified for taking the complement of the
input trip.

4.4.17 TSDelay

TSBoolean is directly inherited from TripSystem to return the input trip signal at a delayed time,

Tr = Tr,1(t− td) (4.16)

where Tr,1 is the input trip signal, t is the current time, and td is the delay time.

[./ TSDelay]
input_names = (required) # The name of inputs to this control/trip component.
input_types = (required) # The type of inputs to this control/trip component.
start_time = (no_default) # Start time of this control/trip component.
trigger_trip_name = (no_default) # Name of the triggering trip of this control/trip component.
initial_output_value = (no_default) # Initial output value of this control/trip component.

In most cases , this is not required.
actuator = 0 # Option to set this control/trip component as an actuator.
add_output_pps = 0 # Option to add a pps (name:value) to get value

of this control/trip component.
add_output_function = 0 # Option to add a function (name:fn) to get value

of this control/trip component.
add_output_variable = 0 # Option to add an aux scalar variable (name:out) to get

value of this control/trip component.
latched = 0 # Whether this trip component is latched.
boolean_type = 0 # The type of boolean operation.

107

delay_time = 0 # The delay time.
[../]

In addition to the input parameters discussed in 4.4.1, there is one additional input parameter:

• delay_time

The delay time of the input trip. The output signal is set to true if the input signal is true and t− td
is larger than TIMEOF value of the input trip.

4.4.18 Input syntax

Because all control/trip components are based on the GeneralUserObject of MOOSE, inputs of
control/trip components lie in the UserObjects block. A user can add control/trip components using
the syntax for adding a normal UserObject. An example is given as follows :

[Functions]
[./ inputFn]

type = ParsedFunction
value = 't'

[../]
[]
[UserObjects]

[./C1] # pi*t
type = CSAddition # This is a CSAddition type of control component.
input_names = 'inputFn ' # A function as the input to the control component.
input_types = 'Function ' # The input is of Function type.
gains = '3.14' # The gain factor to the input.

[../]
[./C2] # S * sin(pi*t)

type = CSSTDFunction # This is a CSSTDFunction type of control component.
input_names = 'C1' # The control component 'C1' is taken as the input.
input_types = 'ControlSystem ' # The input is of a ControlSystem type.
function_type = 'SIN' # The function type is sine function.
add_output_pps = true # Add a pps to print the value.
scaling_factor = 1.5 # Scale the value by 1.5.

[../]
[./T1] # S * sin(pi*t) > 1.0 ?

type = TSCompare # This is a TSCompare type of trip component.
input_names = 'C2 1.0' # The input is a control component and a constant value
input_types = 'ControlSystem Constant ' # The input types are ControlSystem and Constant
compare_type = 'GT' # The comparison type is GT (greater than).
add_output_pps = true # Add a pps to print the TIMEOF value.

[../]
[]

In practice, there could be a large amount of simple control/trip components in an input model.
A special class, CTInputBlock, is added to help add a series of control/trip components in a more
compact way. CTInputBlock is aimed to condense the required information for adding multiple
control/trip components.

CTInputBlock is inherited from GeneralUserObject. The main function of this class is to process
the input parameters to a series of control/trip components and add these components internally. The
associated input parameters are shown below.

[./ CTInputBlock]
ct_name = (required) # The name of all components to add.
ct_type = (required) # The type of all components to add.
ct_input_names = (required) # The parameter 'input_names ' of all components to add.
ct_input_types = (required) # The parameter 'input_types ' of all components to add.

108

add_output_pps = (no_default) # The parameter 'add_output_pps ' of certain components.
add_output_function = (no_default) # The parameter 'add_output_funtion ' of certain components.
add_output_variable = (no_default) # The parameter 'add_output_variable ' of certain components.
start_time = (no_default) # The parameter 'start time' of certain component.
trigger_trip_name = (no_default) # The parameter 'trigger_trip_name ' of certain component.
initial_output_value = (no_default) # The parameter 'initial_output_value '' of certain components.
scaling_factor = (no_default) # The parameter 'scaling_factor ' of certain components.
latched = (no_default) # The parameter 'latched ' of certain components.
bias = (no_default) # The parameter 'bias' of certain components.
gains = (no_default) # The parameter 'gains ' of certain components.
lead_time_constant = (no_default) # The parameter 'lead_time_constant ' of certain components.
lag_time_constant = (no_default) # The parameter 'lag_time_constant ' of certain components.
delay_time = (no_default) # The parameter 'delay_time ' of certain components.
num_pairs = (no_default) # The parameter 'num_pairs ' of certain components.
exponent = (no_default) # The parameter 'exponent ' of certain components.
proportion_gain = (no_default) # The parameter 'proportion_gain ' of certain components.
integration_gain = (no_default) # The parameter 'integration_gain ' of certain components.
function_type = (no_default) # The parameter 'function_type ' of certain components.
lookup_function_name = (no_default) # The parameter 'lookup_function_name ' of certain components.
input_complement = (no_default) # The parameter 'input_complement ' of certain components.
compare_type = (no_default) # The parameter 'compare_type ' of certain components.
boolean_type = (no_default) # The parameter 'boolean_type ' of certain components.
[../]

Input parameters of the CTInputBlock are union of input parameters of all different types of
control/trip components. The meaning of these input parameters were thus already discussed in
previous sections. The input parameters and its format are discussed belows.

• ct_name (required)

This input parameter is a vector names (i.e. string). It specifies the name of control/trip compo-
nents to add in this block. The different names are separated by whitespace, e.g.

ct_name = 'C1 C2 T1' # 3 control/trip components will be added in this block

• ct_type (required)

This input parameter is a vector types (i.e. string). It specifies the type of control/trip components
to add in this block. The different types are separated by whitespace, e.g.

ct_type = 'CSAddition CSSTDFunction TSCompare '

• ct_input_names (required)

This input parameter is a vector of input_names to the individual control/trip component to add
in this block. Because input_names is itself a vector of string, ct_input_names is thus an array
of string. The differnt rows (i.e. individual input_names) are separated by semicolon(;). For
example,

ct_input_names = 'inputFn; C1; C2 1.0'

• ct_input_types (required)

This input parameter is a vector of input_types to the individual control/trip component to add
in this block. Because input_types is itself a vector of string, ct_input_types is thus an array
of string. The differnt rows (i.e. individual input_types) are separated by semicolon(;). For
example,

109

ct_input_types = 'Function; ControlSystem; ControlSystem Constant '

• optional input parameters

The remaining optional input parameters follow the same format. Each input parameter is itself a
single formated string. The string is in the format of (name, value) pairs, where ’name’ is simply
the name of the control/trip component that needs to specify this input parameter. The different
pairs are separated by semicolon(;). For example,

gains = 'C1 3.14' # Only C1 needs the gains input
add_output_pps = 'C2 true; T1 true' # C2 and T1 will add a pps
scaling_factor = 'C2 1.5' # Only C2 needs the scaling_factor input
compare_type = 'T1 GT' # Only T1 needs the compare_type input
function_type = 'C2 SIN' # Only C2 needs the function type

Making use of the CTInputBlock, the previous example 4.4.18 can be condensed to

[Functions]
[./ inputFn]

type = ParsedFunction
value = 't'

[../]
[]
[UserObjects]

[./ block0]
type = CTInputBlock
ct_name = 'C1 C2 T1'
ct_type = 'CSAddition CSSTDFunction TSCompare '
ct_input_names = 'inputFn; C1; C2 1.0'
ct_input_types = 'Function; ControlSystem; ControlSystem Constant '
gains = 'C1 3.14'
add_output_pps = 'C2 true; T1 true'
scaling_factor = 'C2 1.5'
compare_type = 'T1 GT'
function_type = 'C2 SIN'

[../]
[]

4.5 ComponentInputParameters

Independent to the [Components] input block, SAM also provides a separate [ComponentInput-

Parameters] input block, where users could provide input template for certain types of SAM com-
ponents. Note that this input block only provides component ‘template’, and by itself, no real
components will created. There are two common usages of this input block: 1) to provide the com-
mon features of a type of component, which will be used as reference to build real components in
the [Components] input block; and 2) to provide a completely predefined component that will be
referred to and created as a sub-component of a composite-type of component. The two common
usages are to be discussed in the remaining part of this section. Currently, the SAM components
that supports such a feature is listed in Table 4.1.

The first usage is to provide common features for components input. When preparing SAM
input files to perform thermal-hydraulics analysis, it is typical to observe that many components
share common features, for example, a test loop with the majority of it built from a type of standard

110

Table 4.1: SAM components that supports ComponentInputParameters feature

ComponentInputParameters SAM Component Name
DuctedFuelAssemblyParameters DuctedFuelAssembly
HeatPipeParameters HeatPipe
HeatStructureParameters HeatStructure
MultiChannelRodBundleParameters MultiChannelRodBundle
PBCoreChannelParameters PBCoreChannel
PBOneDFluidComponentParameters PBOneDFluidComponent
PBPipeParameters PBPipe

ASME pipe. In this case, [ComponentInputParameters] can be used to provide the abstracted com-
mon features of such a type of components, and [Components] only provides component-specific
parameters and refers to these common features to generate the complete input parameter list.
With this approach, it greatly reduces users’ burden to type in the same parameters for many
times, and also reduces the possibility of input error. Note that input parameters specified in the
[Components] input blocks can override what has been provided as common features provided in
the [ComponentInputParameters] input block. An example is given as follows:

[ComponentInputParameters]
This sub -block provides component input parameter with common features
[./ Schedule -10-w-insulation]

type = PBPipeParameters
eos = eos
A = 6.097763E-04
heat_source = 0
Dh = 2.786380E-02
hs_type = cylinder
Twall_init = 2.981500E+02
heat_source_solid = '0 0'
dim_wall = 2
wall_thickness = '0.0027686 0.0508 '
n_wall_elems = '2 4'
material_wall = 'SS -304 Fiberglass '
HS_BC_type = Temperature
T_wall = 2.981500E+02
HT_surface_area_density = 355.5 # This parameter will be overridden

in one of the two components
[../]

[]

[Components]
[./pipe -1]

type = PBPipe
input_parameters = Schedule -10-w-insulation # This refers to the PBPipeParameters

with common features
length = 1
position = '0 0 0'
orientation = '1 0 0'
n_elems = 20
initial_V = -0.1

[../]

[./pipe -2]
type = PBPipe
input_parameters = Schedule -10-w-insulation # This refers to the PBPipeParameters

111

with common features
length = 2
position = '1 0 0'
orientation = '0 0 1'
n_elems = 25
initial_V = -0.1
HT_surface_area_density = 100.0 # This parameter overrides what has been

provided in Schedule -10-w-insulation
[../]

[]

The other usage is to provide needed input parameters, which predefines a component that will
be referred to and created as a sub-component of a composite-type of component. Currently, this
only happens to a special component, HexLatticeCore, which relies on several predefined compo-
nents to create its sub-components (see section 4.3.11 for more details). An example is given as
follows:
[ComponentInputParameters]

[./F1] # Predefined PBCoreChannel
type = PBCoreChannelParameters
eos = eos
A = 0.005105685
Dh = 0.003446961
length = 0.8
n_elems = 20
HT_surface_area_density = 1068.182718
dim_hs = 2
name_of_hs = 'fuel gap clad'
Ts_init = 628.15
n_heatstruct = 3
fuel_type = cylinder
width_of_hs = '0.003015 0.000465 0.00052 '
elem_number_of_hs = '5 1 1'
material_hs = 'fuel -mat gap -mat clad -mat'
power_shape_function = ppf_axial

[../]

[./ reference_hs] # Predefined heat structures for intra -assembly duct walls and gap
type = HeatStructureParameters
hs_type = plate
length = 0.8
dim_hs = 2
elem_number_axial = 20
elem_number_radial = '2 2 2'
width_of_hs = '0.003 0.004 0.003 '
material_hs = 'duct -mat gap -mat duct -mat'
hs_names = 'duct_i gap duct_o '
Ts_init = 628.15
HS_BC_type = 'Coupled Coupled '
HT_surface_area_density_left = 15.3766
HT_surface_area_density_right = 15.3766

[../]

[./ duct_wall] # Predefined heat structures for duct wall
type = HeatStructureParameters
hs_type = plate
length = 0.8
dim_hs = 2
elem_number_axial = 20
elem_number_radial = 2
width_of_hs = '0.003 '
material_hs = 'duct -mat'
hs_names = 'duct'

112

Ts_init = 628.15
HS_BC_type = 'Coupled Adiabatic '
HT_surface_area_density_left = 15.3766

[../]
[]

[Components]
[./ core]

type = HexLatticeCore
position = '0 0 0'
orientation = '0 0 1'
n_side = 2
assem_pitch = 0.14598
assem_Dft = 0.13598
radial_power_peaking = '1 1 1 1.5 1 1 0.5'

assem_layout = 'F1 F1 F1 F1 F1 F1 F1' # F1 refers to the predefined
PBCoreChannelParameters

ref_hs = reference_hs # This refers to a predefined heat structure
ref_duct = duct_wall # This refers to a predefined duct wall heat structure

[../]
[]

4.6 PostProcessors

4.6.1 ComponentBoundaryEnergyBalance

This Postprocessor is designed to monitor the energy flux balance between two selected pipe
ends. A common usage is to monitor the energy balance of a pipe component on its two ends, and
compare it with the total heat source applied to this pipe.
[./ ComponentBoundaryEnergyBalance]

eos = (required) # The name of equation of state object to use.
execute_on = TIMESTEP_END # The list of flag(s) indicating when this object should

be executed , the available options include NONE , INITIAL ,
LINEAR , NONLINEAR , TIMESTEP_END ,
TIMESTEP_BEGIN , FINAL , CUSTOM.

input = (required) # Name of the components and boundaries
[../]

• input (required)

This input parameter specifies a list of two pipe ends, where energy fluxes are to be compared to
compute an energy balance between them:

(ρuhA)2− (ρuhA)1 .

The input syntax is similar to those for junction type of component, e.g., input = ‘pipe-1(in)

pipe-1(out)’ or input = ‘IHX(secondary_in) IHX(secondary_out)’.

• eos (required)

Equation of state used in the pipe component.

• execute_on

This is an input parameter inherited from MOOSE framework, it specifies how often this Postpro-
cessor should perform a computation. It is common to all Postprocessors to be discussed in this
section, and in general, it is safe to not specify anything.

113

4.6.2 ComponentBoundaryFlow

This Postprocessor is simply monitors the mass flow rate, ρuA, of a pipe end.

[./ ComponentBoundaryFlow]
input = (required) # Name of the components and boundaries
scale_factor = 1 # Scale factor to be applied to the ordinate values

[../]

• input (required)

This input parameter specifies a pipe and one of its ends, where mass flow rate is to be com-
puted as ρuA. The input syntax is similar to those for junction type of component, e.g., input =

pump_pipe(in).

• scale_factor

This is a scaling factor to be multiplied to the mass flow rate. The default value is 1.

4.6.3 ComponentBoundaryScalarFlow

This Postprocessor is similar to ComponentBoundaryFlow, and it simply monitors the flow rate
of a passive scalar, ρuAφ , of a pipe end.

[./ ComponentBoundaryScalarFlow]
input = (required) # Name of the components and boundaries
variable = (required) # Name of the particle
scale_factor = 1 # Scale factor to be applied to the ordinate values

[../]

• input (required)

This input parameter specifies a pipe and one of its ends, where the flow rate of a passive scalar
is to be computed as ρuAφ . The input syntax is similar to those for junction type of component,
e.g., input = pump_pipe(in).

• variable (required)

The name of the passive scalar variable.

• scale_factor

This is a scaling factor to be multiplied to the flow rate of the passive scalar. The default value is
1.

4.6.4 ComponentBoundaryVariableValue

This Postprocessor returns the value of a specified variable at a pipe end.

[./ ComponentBoundaryVariableValue]
input = (required) # Name of the components and boundaries
variable = (required) # Name of the variable
scale_factor = 1 # Scale factor to be applied to the ordinate values

[../]

114

• input (required)

The same as in ComponentBoundaryScalarFlow.

• variable (required)

The name of the variable, such as “pressure”, “temperature”, “velocity”, “rho” (fluid density),
“enthalpy”, “heat transfer coefficient” (if modeled), and passive scalars (if modeled).

• scale_factor

This is a scaling factor to be multiplied to the variable value. The default value is 1.

4.6.5 ComponentNodalVariableValue

This Postprocessor returns the value of a specified variable on a specified node in a pipe.

[./ ComponentNodalVariableValue]
input = (required) # Name of the components and boundaries
variable = (required) # Name of the variable
scale_factor = 1 # Scale factor to be applied to the ordinate values

[../]

• input (required)

This input parameter specifies a pipe and a node id, where the value of the specified variable will
be returned. The input syntax is, for example, input = pipe(0) or input = IHX:primary_pipe(10).
Note that node id starts from 0.

• variable (required)

The same as in ComponentBoundaryVariableValue.

• scale_factor

This is a scaling factor to be multiplied to the variable value. The default value is 1.

4.6.6 ConductionHeatRemovalRate

This Postprocessor computes the integral heat removal rate from a side of a two-dimensional
heat structure.

[./ ConductionHeatRemovalRate]
boundary = (required) # The list of boundary IDs from

the mesh where this boundary
condition applies

heated_perimeter = (required) # The length of the HeatExchanger heated perimeter
[../]

• boundary (required)

This input parameter specifies the boundary name where the integral heat removal rate to be
computed, for example, boundary = ‘hp0:cond_wall’.

115

• heated_perimeter (required)

The heated perimeter of the boundary to compute the integral heat removal rate,

Q =
∫
−k∇T PhdL

in which, −k∇T is the local surface heat flux, dL is the length along the boundary side, and Ph is
this heated perimeter input parameter.

4.6.7 HeatExchangerHeatRemovalRate

This Postprocessor computes the integral heat removal rate from the wall heat structure of a heat
exchanger to a specified pipe, e.g., the primary or the secondary side pipe.

[./ HeatExchangerHeatRemovalRate]
block = (required) # The list of block ids (SubdomainID)

that this object will be applied
heated_perimeter = (required) # The length of the HeatExchanger heated perimeter

[../]

• block (required)

This input parameter specifies the block name where the integral heat removal rate to be com-
puted, for example, block = ‘DHX:primary_pipe’.

• heated_perimeter (required)

The heated perimeter of the boundary to compute the integral heat removal rate,

Q =
∫

h(Tf −Twall)PhdL

in which, h is the local heat transfer coefficient, Tf is the local fluid temperature, Twall is the local
wall surface temperature, dL is the length along the pipe, and Ph is this heated perimeter input
parameter.

4.7 TimeSteppers

4.7.1 CourantNumberTimeStepper

The CourantNumberTimeStepper is a TimeStepper inherited from PostprocessorDT, which com-
putes time step size based on a Postprocessor value, in this case, MaxCourantNumber. Its input
parameters are listed as follows:

[./< CourantNumberTimeStepper >]
Courant_number = 10 # Target Courant number
dt = (no_default) # Initial value of dt
factor = 0 # Add a factor to the

supplied postprocessor
value.

postprocessor = Simulation:MaxCourantNumber(required) # The name of the postprocessor
that computes the dt

reset_dt = 0 # Use when restarting
a calculation to force
a change in dt.

116

scale = 1 # Multiple scale and
supplied postprocessor
value.

type = CourantNumberTimeStepper
[../]

Input parameters are discussed as follows:

• Courant_number

This TimeStepper adjusts the time step size to match this given Courant number as a user
input parameter. The default value is 10.

• dt

The initial value of time step size for this TimeStepper to start with. If not specified, the code
uses a default value of 0.01 second.

• factor and scale

These two input parameters are not used.

• postprocessor

You do NOT and should NOT specify this input parameter. A default value, Simulation:
MaxCourantNumber, has been automatically generated and given to this parameter.

• reset_dt (advanced MOOSE option)

Use when restarting a calculation to force a change in dt. By default, it is false (0).

An example input of the CourantNumberTimeStepper block is shown below.

[./ TimeStepper]
type = CourantNumberTimeStepper
dt = 0.02
Courant_number = 0.5

[../]

This input block should be used as an sub-block of the Executioner input block.

4.8 Preconditioning

The Preconditioning block describes the preconditioner to be used by the preconditioned JFNK
solver (available through PETSc). Two options are currently available, the single matrix precondi-
tioner (SMP) and the finite difference preconditioner (FDP). The FDP option uses numerical Jaco-
bian by doing direct finite differences of the residual terms. It is normally slow, and only intended
for debugging purposes. The SMP option is more efficient and the recommended option. The input
parameters of the Preconditioning block are shown below. An example input block follows.

[Preconditioning]
[./*]

active = __all__ # If specified only the blocks named will be
visited and made active

line_search = default # Specifies the line search type (Note:
none = basic)

petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs

117

petsc_options_value = # Values of PETSc name/value pairs (must
correspond with "petsc_options_iname"

solve_type = # PJFNK: Preconditioned Jacobian -Free Newton
Krylov JFNK , NEWTON , FD, LINEAR

[../]

[./ FDP]
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
enable = 1 # Set the enabled status of the MooseObject.
full = 0 # Set to true if you want the full set of

couplings.
implicit_geometric_coupling = 0 # Set to true if you want to add entries into

the matrix for degrees of freedom that might
be coupled by inspection of the geometric
search objects.

line_search = default # Specifies the line search type (Note:
none = basic)

off_diag_column = # The off diagonal column you want to add into
the matrix , it will be associated with an
off diagonal row from the same position in
off_diag_row.

off_diag_row = # The off diagonal row you want to add into
the matrix , it will be associated
with an off diagonal column from the same
position in off_diag_colum.

pc_side = right # Preconditioning side
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
type = FDP

[../]

[./ SMP]
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
coupled_groups = # List multiple space separated groups of

comma separated variables. Off -diagonal
jacobians will be generated for all pairs
within a group.

enable = 1 # Set the enabled status of the MooseObject.
full = 0 # Set to true if you want the full set of

couplings.
line_search = default # Specifies the line search type (Note:

none = basic)
off_diag_column = # The off diagonal column you want to add into

the matrix , it will be associated with an
off diagonal row from the same position in
off_diag_row.

off_diag_row = # The off diagonal row you want to add into
the matrix , it will be associated
with an off diagonal column from the same
position in off_diag_colum.

pc_side = right # Preconditioning side
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
type = SMP

118

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

[./ SMP_PJFNK]
type = SMP # Single -Matrix Preconditioner
full = true # Using the full set of couplings among all variables
solve_type = 'PJFNK ' # Using Preconditioned JFNK solution method
petsc_options_iname = '-pc_type ' # Names of PETSc name/value pairs
petsc_options_value = 'lu' # Values of PETSc name/value pairs

[../]

[]

4.9 Executioner

The Executioner block describes the calculation process flow used in the simulation. The com-
mon MOOSE Executioners are also listed here, and the associated input parameters of the Execu-
tioner block are shown below. An example of the Executioner input block is also followed. Com-
mon SAM MOOSE Executioner types include: CoupledCFDExecutioner (for coupled simulation
with CFD codes), CoupledSASTransient (for coupled SAS/SAM transient simulations), Steady (for
steady state simulation), and Transient (for transient simulations).
[./< Executioner >]
[Executioner]

active = __all__ # If specified only the blocks named will be
visited and made active

petsc_options_iname = # petsc options names
petsc_options_value = # petsc options values
scheme = bdf2 # Time integration scheme used.

[./<type >]
[./ CoupledCFDExecutioner]

CFD_scaling_factor = 1 # the scaling factor in the CFD model
SYSCFDBoundaryConsistency = (required) # if the SYS and CFD Boundaries are

consistent
abort_on_solve_fail = 0 # abort if solve not converged rather than

cut timestep
compute_initial_residual_before_preset_bcs = 0 # Use the residual norm computed

before PresetBCs are imposed in relative
convergence check

control_tags = # Adds user -defined labels for accessing
object parameters via control logic.

dt = 1 # The timestep size between solves
dtmax = 1e+30 # The maximum timestep size in an adaptive run
dtmin = 2e-14 # The minimum timestep size in an adaptive run
enable = 1 # Set the enabled status of the MooseObject.
end_time = 1e+30 # The end time of the simulation
input_data_file = (required) # Input data file from external coupling
isRestarting = 0 # if it is a restart coupled code simulation
l_abs_step_tol = -1 # Linear Absolute Step Tolerance
l_max_its = 10000 # Max Linear Iterations
l_tol = 1e-05 # Linear Tolerance
line_search = default # Specifies the line search type

(Note: none = basic)
n_in_parameter = (required) # Number of coupling input parameters
n_out_parameter = (required) # Number of coupling output parameters
n_startup_steps = 0 # The number of timesteps during startup

119

name_of_in_components = (required) # Names of coupling input components
name_of_in_parameters = (required) # Parameter names of coupling input

components
name_of_out_components = (required) # Names of coupling output components
name_of_out_parameters = (required) # Variable names of coupling output

components
names_of_CFD_boundary = (required) # names of coupled CFD boundaries
nl_abs_step_tol = 1e-50 # Nonlinear Absolute step Tolerance
nl_abs_tol = 1e-50 # Nonlinear Absolute Tolerance
nl_max_funcs = 10000 # Max Nonlinear solver function evaluations
nl_max_its = 50 # Max Nonlinear Iterations
nl_rel_step_tol = 1e-50 # Nonlinear Relative step Tolerance
nl_rel_tol = 1e-08 # Nonlinear Relative Tolerance
no_fe_reinit = 0 # Specifies whether or not to reinitialize

FEs
num_steps = 4294967295 # The number of timesteps in a transient run
output_data_file = (required) # Output data file for external coupling
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
picard_abs_tol = 1e-50 # The absolute nonlinear residual to shoot

for during Picard iterations. This check is
performed based on the Master app's
nonlinear residual.

picard_max_its = 1 # Number of times each timestep will be
solved. Mainly used when wanting to do
Picard iterations with MultiApps that
are set to execute_on
timestep_end or timestep_begin

picard_rel_tol = 1e-08 # The relative nonlinear residual drop
to shoot for during Picard iterations.
This check is performed based on the Master
app's nonlinear residual.

reset_dt = 0 # Use when restarting a calculation to force
a change in dt.

restart_file_base = # File base name used for restart
scheme = # Time integration scheme used.
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
splitting = # Top -level splitting defining a hierarchical

decomposition into subsystems to help
the solver.

ss_check_tol = 1e-08 # Whenever the relative residual changes by
less than this the solution
will be considered to be at steady state.

ss_tmin = 0 # Minimum number of timesteps to take before
checking for steady state conditions.

start_time = 0 # The start time of the simulation
time_period_ends = # The end times of time periods
time_period_starts = # The start times of time periods
time_periods = # The names of periods
timestep_tolerance = 2e-14 # the tolerance setting for final timestep

size and sync times
trans_ss_check = 0 # Whether or not to check for steady state

conditions
type = CoupledCFDExecutioner
use_multiapp_dt = 0 # If true then the dt for the simulation will

be chosen by the MultiApps. If false
(the default) then the minimum over the
master dt and the MultiApps is used

verbose = 0 # Print detailed diagnostics on timestep
calculation

[../]

120

[./ CoupledSASTransient]
abort_on_solve_fail = 0 # abort if solve not converged rather than

cut timestep
compute_initial_residual_before_preset_bcs = 0 # Use the residual norm computed

before PresetBCs are imposed in relative
convergence check

control_tags = # Adds user -defined labels for accessing
object parameters via control logic.

coupling_components = (required) # Names of coupling components
dt = 1 # The timestep size between solves
dtmax = 1e+30 # The maximum timestep size in an adaptive run
dtmin = 2e-14 # The minimum timestep size in an adaptive run
enable = 1 # Set the enabled status of the MooseObject.
end_time = 1e+30 # The end time of the simulation
input_fifo = (required) # Input data named pipe from external

coupling
l_abs_step_tol = -1 # Linear Absolute Step Tolerance
l_max_its = 10000 # Max Linear Iterations
l_tol = 1e-05 # Linear Tolerance
line_search = default # Specifies the line search type

(Note: none = basic)
n_startup_steps = 0 # The number of timesteps during startup
nl_abs_step_tol = 1e-50 # Nonlinear Absolute step Tolerance
nl_abs_tol = 1e-50 # Nonlinear Absolute Tolerance
nl_max_funcs = 10000 # Max Nonlinear solver function evaluations
nl_max_its = 50 # Max Nonlinear Iterations
nl_rel_step_tol = 1e-50 # Nonlinear Relative step Tolerance
nl_rel_tol = 1e-08 # Nonlinear Relative Tolerance
no_fe_reinit = 0 # Specifies whether or not to reinitialize

FEs
num_steps = 4294967295 # The number of timesteps in a transient run
output_fifo = (required) # Output data named pipe from external

coupling
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
picard_abs_tol = 1e-50 # The absolute nonlinear residual to shoot

for during Picard iterations. This check is
performed based on the Master app's
nonlinear residual.

picard_max_its = 1 # Number of times each timestep will be
solved. Mainly used when wanting to do
Picard iterations with MultiApps that
are set to execute_on
timestep_end or timestep_begin

picard_rel_tol = 1e-08 # The relative nonlinear residual drop
to shoot for during Picard iterations.
This check is performed based on the Master
app's nonlinear residual.

reset_dt = 0 # Use when restarting a calculation to force
a change in dt.

restart_file_base = # File base name used for restart
scheme = # Time integration scheme used.
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
splitting = # Top -level splitting defining a hierarchical

decomposition into subsystems to help
the solver.

ss_check_tol = 1e-08 # Whenever the relative residual changes by
less than this the solution
will be considered to be at steady state.

ss_tmin = 0 # Minimum number of timesteps to take before

121

checking for steady state conditions.
start_time = 0 # The start time of the simulation
time_period_ends = # The end times of time periods
time_period_starts = # The start times of time periods
time_periods = # The names of periods
timestep_tolerance = 2e-14 # the tolerance setting for final timestep

size and sync times
trans_ss_check = 0 # Whether or not to check for steady state

conditions
type = CoupledSASTransient
use_multiapp_dt = 0 # If true then the dt for the simulation will

be chosen by the MultiApps. If false
(the default) then the minimum over the
master dt and the MultiApps is used

verbose = 0 # Print detailed diagnostics on timestep
calculation

[../]

[./ Steady]
compute_initial_residual_before_preset_bcs = 0

Use the residual norm computed *before*
PresetBCs are imposed in relative
convergence check

control_tags = # Adds user -defined labels for accessing
object parameters via control logic.

enable = 1 # Set the enabled status of the MooseObject.
l_abs_step_tol = -1 # Linear Absolute Step Tolerance
l_max_its = 10000 # Max Linear Iterations
l_tol = 1e-05 # Linear Tolerance
line_search = default # Specifies the line search type

(Note: none = basic)
nl_abs_step_tol = 1e-50 # Nonlinear Absolute step Tolerance
nl_abs_tol = 1e-50 # Nonlinear Absolute Tolerance
nl_max_funcs = 10000 # Max Nonlinear solver function evaluations
nl_max_its = 50 # Max Nonlinear Iterations
nl_rel_step_tol = 1e-50 # Nonlinear Relative step Tolerance
nl_rel_tol = 1e-08 # Nonlinear Relative Tolerance
no_fe_reinit = 0 # Specifies whether or not to reinitialize

FEs
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
restart_file_base = # File base name used for restart
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
splitting = # Top -level splitting defining a hierarchical

decomposition into subsystems to help
the solver.

type = Steady
[../]

[./ Transient]
abort_on_solve_fail = 0 # abort if solve not converged rather than

cut timestep
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
dt = 1 # The timestep size between solves
dtmax = 1e+30 # The maximum timestep size in an adaptive run
dtmin = 2e-14 # The minimum timestep size in an adaptive run
enable = 1 # Set the enabled status of the MooseObject.
end_time = 1e+30 # The end time of the simulation

l_abs_step_tol = -1 # Linear Absolute Step Tolerance

122

l_max_its = 10000 # Max Linear Iterations
l_tol = 1e-05 # Linear Tolerance
line_search = default # Specifies the line search type

(Note: none = basic)
n_startup_steps = 0 # The number of timesteps during startup
nl_abs_step_tol = 1e-50 # Nonlinear Absolute step Tolerance
nl_abs_tol = 1e-50 # Nonlinear Absolute Tolerance
nl_max_funcs = 10000 # Max Nonlinear solver function evaluations
nl_max_its = 50 # Max Nonlinear Iterations
nl_rel_step_tol = 1e-50 # Nonlinear Relative step Tolerance
nl_rel_tol = 1e-08 # Nonlinear Relative Tolerance
no_fe_reinit = 0 # Specifies whether or not to reinitialize

FEs
num_steps = 4294967295 # The number of timesteps in a transient run
petsc_options = # Singleton PETSc options
petsc_options_iname = # Names of PETSc name/value pairs
petsc_options_value = # Values of PETSc name/value pairs (must

correspond with "petsc_options_iname"
picard_abs_tol = 1e-50 # The absolute nonlinear residual to shoot

for during Picard iterations. This check is
performed based on the Master app's
nonlinear residual.

picard_max_its = 1 # Number of times each timestep will be
solved. Mainly used when wanting to do
Picard iterations with MultiApps that
are set to execute_on
timestep_end or timestep_begin

picard_rel_tol = 1e-08 # The relative nonlinear residual drop
to shoot for during Picard iterations.
This check is performed based on the Master
app's nonlinear residual.

reset_dt = 0 # Use when restarting a calculation to force
a change in dt.

restart_file_base = # File base name used for restart
scheme = # Time integration scheme used.
solve_type = # PJFNK: Preconditioned Jacobian -Free Newton

Krylov JFNK , NEWTON , FD, LINEAR
splitting = # Top -level splitting defining a hierarchical

decomposition into subsystems to help
the solver.

ss_check_tol = 1e-08 # Whenever the relative residual changes by
less than this the solution
will be considered to be at steady state.

ss_tmin = 0 # Minimum number of timesteps to take before
checking for steady state conditions.

start_time = 0 # The start time of the simulation
time_period_ends = # The end times of time periods
time_period_starts = # The start times of time periods
time_periods = # The names of periods
timestep_tolerance = 2e-14 # the tolerance setting for final timestep

size and sync times
trans_ss_check = 0 # Whether or not to check for steady state

conditions
type = Transient
use_multiapp_dt = 0 # If true then the dt for the simulation will

be chosen by the MultiApps. If false
(the default) then the minimum over the
master dt and the MultiApps is used

verbose = 0 # Print detailed diagnostics on timestep
calculation

[../]

[./ Quadrature]
active = __all__ # If specified only the blocks named will be

123

visited and made active
element_order = AUTO # Order of the quadrature for elements
order = AUTO # Order of the quadrature
side_order = AUTO # Order of the quadrature for sides
type = GAUSS # Type of the quadrature rule

[../]

[./ TimeStepper]
active = __all__ # If specified only the blocks named will be

visited and made active
[./<type >]

[./ ContinueOnDtMinTimeStepper]
control_tags = # Adds user -defined labels for accessing

objectparameters via control logic.
enable = 1 # Set the enabled status of the MooseObject.
growth_factor = 2 # Maximum ratio of new to previous timestep

sizes following a step that required the
time step to be cut due to a failed solve.

interpolate = 1 # Whether or not to interpolate DT between
times. This is true by default for
historical reasons.

min_dt = 0 # The minimal dt to take.
reset_dt = 0 # Use when restarting a calculation to force

a change in dt.
time_dt = # The values of dt
time_t = # The values of t
type = ContinueOnDtMinTimeStepper

[../]

[./ CourantNumberTimeStepper]
Courant_number = 10 # Target Courant number
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
dt = # Initial value of dt
enable = 1 # Set the enabled status of the MooseObject.
postprocessor = Simulation:MaxCourantNumber

The name of the postprocessor that
computes the dt

reset_dt = 0 # Use when restarting a calculation to force
a change in dt.

type = CourantNumberTimeStepper
[../]

[./ FunctionDT]
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
enable = 1 # Set the enabled status of the MooseObject.
growth_factor = 2 # Maximum ratio of new to previous timestep

sizes following a step that required the
time step to be cut due to a failed solve.

interpolate = 1 # Whether or not to interpolate DT between
times. This is true by default for
historical reasons.

min_dt = 0 # The minimal dt to take.
reset_dt = 0 # Use when restarting a calculation to force

a change in dt.
time_dt = # The values of dt
time_t = # The values of t
type = FunctionDT

[../]

[./ PostprocessorDT]
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.

124

dt = # Initial value of dt
enable = 1 # Set the enabled status of the MooseObject.
postprocessor = (required) # The name of the postprocessor that computes

the dt
reset_dt = 0 # Use when restarting a calculation to force

a change in dt.
type = PostprocessorDT

[../]
[../]

[../]
[]

[../]

[Executioner]
type = Transient # This is a transient simulation

dt = 1e-1 # Targeted time step size
dtmin = 1e-10 # The allowed minimum time step size

petsc_options_iname = '-ksp_gmres_restart ' # Additional PETSc settings , name list
petsc_options_value = '300' # Additional PETSc settings , value list

nl_rel_tol = 1e-7 # Relative nonlinear tolerance for each Newton solve
nl_abs_tol = 1e-6 # Relative nonlinear tolerance for each Newton solve
nl_max_its = 30 # Number of nonlinear iterations for each Newton solve

l_tol = 1e-6 # Relative linear tolerance for each Krylov solve
l_max_its = 100 # Number of linear iterations for each Krylov solve

start_time = 0.0 # Physical time at the beginning of the simulation
num_steps = 100 # Max. simulation time steps
end_time = 100. # Max. physical time at the end of the simulation

[./ Quadrature]
type = TRAP # Using trapezoid integration rule
order = FIRST # Order of the quadrature

[../]
[]

4.10 Outputs

The Outputs block specifies various settings of different output types (screen display and files)
in the simulation. The input parameters of common MOOSE Outputs are shown below, with an
example Outputs block followed. Common MOOSE output types include:

• CSV: write post-processor and scalar variables to a separate comma-separated-values file,

• Checkpoint: save snapshots of the simulation data including all meshes, solutions, and stateful
object data,

• Console: output to screen with runtime information,

• Exocdus: write all mesh and solution data to an ExodusII file.

[Outputs]
active = __all__ # If specified only the blocks named will be

125

visited and made active
[./ CSV]

additional_execute_on = # This list of output flags is added to the
existing flags (initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

align = 0 # Align the outputted csv data by padding
the numbers with trailing whitespace

append_date = 0 # When true the date and time are appended
to the output filename.

append_date_format = # The format of the date/time to append ,
if not given UTC format used (see
http ://www.cplusplus.com/reference
/ctime/strftime).

append_restart = 0 # Append existing file on restart
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
delimiter = # Assign the delimiter (default is ','
enable = 1 # Set the enabled status of the MooseObject.
end_time = # Time at which this output object stop

operating
execute_elemental_variables = 1 # Enable/disable the output of elemental

variables
execute_input = 1 # Enable/disable the output of input file

information
execute_nodal_variables = 1 # Enable/disable the output of nodal

variables
execute_on = 'INITIAL TIMESTEP_END ' # Set to

(none|initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

execute_postprocessors_on = # Control of when postprocessors are output
execute_scalar_variables = 1 # Enable/disable the output of aux scalar

variables
execute_scalars_on = # Control the output of scalar variables
execute_system_information = 1 # Enable/disable the output of the simulation

information
execute_vector_postprocessors = 1 # Enable/disable the output of vector

postprocessors
execute_vector_postprocessors_on = # Enable/disable the output of

#VectorPostprocessors
file_base = # The desired solution output name without an

extension
hide = # A list of the variables and postprocessors

that should NOT be output to the Exodus
file (may include Variables ,
ScalarVariables , and Postprocessor names).

interval = 1 # The interval at which time steps are output
to the solution file

linear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting linear residuals

linear_residual_end_time = # Specifies an end time to begin output on
each linear residual evaluation

linear_residual_start_time = # Specifies a start time to begin output on
each linear residual evaluation

linear_residuals = 0 # Specifies whether output occurs on each
linear residual evaluation

nonlinear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting non -linear residuals

nonlinear_residual_end_time = # Specifies an end time to begin output on
each nonlinear residual evaluation

nonlinear_residual_start_time = # Specifies a start time to begin output on

126

each nonlinear residual evaluation
nonlinear_residuals = 0 # Specifies whether output occurs on each

nonlinear residual evaluation
output_if_base_contains = # If this is supplied then output will only

be done in the case that the output base
contains one of these strings. This is
helpful in outputting only a subset of
outputs when using MultiApps.

output_linear = 0 # Specifies whether output occurs on each
linear residual evaluation

output_nonlinear = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

output_postprocessors = 1 # Enable/disable the output of postprocessors
precision = 14 # Set the output precision
show = # A list of the variables and postprocessors

that should be output to the Exodus file
(may include Variables , ScalarVariables ,
and Postprocessor names).

start_time = # Time at which this output object begins to
operate

sync_only = 0 # Only export results at sync times
sync_times = # Times at which the output and solution is

forced to occur
time_data = 0 # When true and VecptorPostprocessor data

exists , write a csv file containing
the timestep and time information.

time_tolerance = 1e-14 # Time tolerance utilized checking start and
end times

type = CSV
use_displaced = 0 # Enable/disable the use of the displaced

mesh for outputting
[../]

[./ Checkpoint]
additional_execute_on = # This list of output flags is added to the

existing flags (initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

append_date = 0 # When true the date and time are appended
to the output filename.

append_date_format = # The format of the date/time to append ,
if not given UTC format used (see
http ://www.cplusplus.com/reference
/ctime/strftime).

binary = 1 # Toggle the output of binary files
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
enable = 1 # Set the enabled status of the MooseObject.
end_time = # Time at which this output object stop

operating
execute_on = 'INITIAL TIMESTEP_END ' # Set to

(none|initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

file_base = # The desired solution output name without an
extension

interval = 1 # The interval at which time steps are output
to the solution file

linear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting linear residuals

linear_residual_end_time = # Specifies an end time to begin output on
each linear residual evaluation

127

linear_residual_start_time = # Specifies a start time to begin output on
each linear residual evaluation

linear_residuals = 0 # Specifies whether output occurs on each
linear residual evaluation

nonlinear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting non -linear residuals

nonlinear_residual_end_time = # Specifies an end time to begin output on
each nonlinear residual evaluation

nonlinear_residual_start_time = # Specifies a start time to begin output on
each nonlinear residual evaluation

nonlinear_residuals = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

num_files = 2 # Number of the restart files to save
output_if_base_contains = # If this is supplied then output will only

be done in the case that the output base
contains one of these strings. This is
helpful in outputting only a subset of
outputs when using MultiApps.

output_linear = 0 # Specifies whether output occurs on each
linear residual evaluation

output_nonlinear = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

padding = 4 # The number of for extension suffix (e.g.,
out.e-s002)

start_time = # Time at which this output object begins to
operate

suffix = cp # This will be appended to the file_base to
create the directory name for checkpoint
files.

sync_only = 0 # Only export results at sync times
sync_times = # Times at which the output and solution is

forced to occur
time_data = 0 # When true and VecptorPostprocessor data

exists , write a csv file containing
the timestep and time information.

time_tolerance = 1e-14 # Time tolerance utilized checking start and
end times

type = Checkpoint
use_displaced = 0 # Enable/disable the use of the displaced

mesh for outputting
[../]

[./ Console]
additional_execute_on = # This list of output flags is added to the

existing flags (initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

all_variable_norms = 0 # If true , all variable norms will be printed
after each solve

append_date = 0 # When true the date and time are appended
to the output filename.

append_date_format = # The format of the date/time to append ,
if not given UTC format used (see
http ://www.cplusplus.com/reference
/ctime/strftime).

append_restart = 0 # Append existing file on restart
control_tags = # Adds user -defined labels for accessing

object parameters via control logic.
enable = 1 # Set the enabled status of the MooseObject.
end_time = # Time at which this output object stop

operating
execute_elemental_variables = 1 # Enable/disable the output of elemental

variables

128

execute_input = 1 # Enable/disable the output of input file
information

execute_input_on = # Enable/disable the output of the input file
execute_nodal_variables = 1 # Enable/disable the output of nodal

variables
execute_on = 'INITIAL TIMESTEP_END ' # Set to

(none|initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

execute_postprocessors_on = # Control of when postprocessors are output
execute_scalar_variables = 1 # Enable/disable the output of aux scalar

variables
execute_scalars_on = # Control the output of scalar variables
execute_system_information = 1 # Enable/disable the output of the simulation

information
execute_vector_postprocessors = 1 # Enable/disable the output of vector

postprocessors
execute_vector_postprocessors_on = # Enable/disable the output of

#VectorPostprocessors
file_base = # The desired solution output name without an

extension
fit_mode = ENVIRONMENT # Specifies the wrapping mode for post

-processor tables that are printed to
the screen
(ENVIRONMENT: Read "MOOSE_PPS_WIDTH" for
desired width , AUTO: Attempt to determine
width automatically (serial only), <n>:
Desired width

hide = # A list of the variables and postprocessors
that should NOT be output to the Exodus
file (may include Variables ,
ScalarVariables , and Postprocessor names).

interval = 1 # The interval at which time steps are output
to the solution file

linear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting linear residuals

linear_residual_end_time = # Specifies an end time to begin output on
each linear residual evaluation

linear_residual_start_time = # Specifies a start time to begin output on
each linear residual evaluation

linear_residuals = 0 # Specifies whether output occurs on each
linear residual evaluation

max_rows = 15 # The maximum number of postprocessor/scalar
values displayed on screen
during a timestep (set to 0 for unlimited)

nonlinear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting non -linear residuals

nonlinear_residual_end_time = # Specifies an end time to begin output on
each nonlinear residual evaluation

nonlinear_residual_start_time = # Specifies a start time to begin output on
each nonlinear residual evaluation

nonlinear_residuals = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

outlier_multiplier = '0.8 2' # Multiplier utilized to determine if a
residual norm is an outlier. If the
variable residual is less than
multiplier [0] times the total
residual it is colored red. If the
variable residual is
less than multiplier [1] times
the average residual it is colored yellow.

outlier_variable_norms = 1 # If true , outlier variable norms will be
printed after each solve

129

output_file = 0 # Output to the file
output_if_base_contains = # If this is supplied then output will only

be done in the case that the output base
contains one of these strings. This is
helpful in outputting only a subset of
outputs when using MultiApps.

output_linear = 0 # Specifies whether output occurs on each
linear residual evaluation

output_nonlinear = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

output_postprocessors = 1 # Enable/disable the output of postprocessors
output_screen = 1 # Output to the screen
padding = 4 # The number of for extension suffix (e.g.,

out.e-s002)
perf_header = # Print the libMesh performance log header

(requires that 'perf_log = true ')
perf_log = 0 # If true , all performance logs will be

printed. The individual log settings will
override this option.

perf_log_interval = 0 # If set , the performance log will be printed
every n time steps

print_mesh_changed_info = 0 # When true , each time the mesh is changed
the mesh information is printed

scientific_time = 0 # Control the printing of time and dt in
scientific notation

setup_log = # Toggles the printing of the 'Setup
Performance ' log

setup_log_early = 0 # Specifies whether or not the Setup
Performance log should be printed before
the first time step. It will still be
printed at the end if perf_log
is also enabled and likewise disabled
if perf_log is false

show = # A list of the variables and postprocessors
that should be output to the Exodus file
(may include Variables , ScalarVariables ,
and Postprocessor names).

show_multiapp_name = 0 # Indent multiapp output using the
multiapp name

solve_log = # Toggles the printing of the 'Moose Test
Performance ' log

start_time = # Time at which this output object begins to
operate

sync_only = 0 # Only export results at sync times
sync_times = # Times at which the output and solution is

forced to occur
system_info = 'AUX EXECUTION FRAMEWORK MESH NONLINEAR '

List of information types
to display ('framework ', 'mesh ', 'aux ',
'nonlinear ', 'execution ', 'output ')

time_data = 0 # When true and VecptorPostprocessor data
exists , write a csv file containing
the timestep and time information.

time_precision = # The number of significant digits that are
printed on time related outputs

time_tolerance = 1e-14 # Time tolerance utilized checking start and
end times

type = Console
use_displaced = 0 # Enable/disable the use of the displaced

mesh for outputting
verbose = 0 # Print detailed diagnostics on timestep

calculation
[../]

130

[./ Exodus]
additional_execute_on = # This list of output flags is added to the

existing flags (initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

append_date = 0 # When true the date and time are appended
to the output filename.

append_date_format = # The format of the date/time to append ,
if not given UTC format used (see
http ://www.cplusplus.com/reference
/ctime/strftime).

append_oversample = 0 # Append '_oversample ' to the output
file base

control_tags = # Adds user -defined labels for accessing
object parameters via control logic.

enable = 1 # Set the enabled status of the MooseObject.
end_time = # Time at which this output object stop

operating
execute_elemental_on = # Control the output of elemental variables
execute_elemental_variables = 1 # Enable/disable the output of elemental

variables
execute_input = 1 # Enable/disable the output of input file

information
execute_input_on = # Enable/disable the output of the input file
execute_nodal_on = # Control the output of nodal variables
execute_nodal_variables = 1 # Enable/disable the output of nodal

variables
execute_on = 'INITIAL TIMESTEP_END ' # Set to

(none|initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

execute_postprocessors_on = # Control of when postprocessors are output
execute_scalar_variables = 1 # Enable/disable the output of aux scalar

variables
execute_scalars_on = # Control the output of scalar variables
execute_system_information = 1 # Enable/disable the output of the simulation

information
execute_vector_postprocessors = 1 # Enable/disable the output of vector

postprocessors
file = # The name of the mesh file to read , for

oversampling
file_base = # The desired solution output name without an

extension
hide = # A list of the variables and postprocessors

that should NOT be output to the Exodus
file (may include Variables ,
ScalarVariables , and Postprocessor names).

interval = 1 # The interval at which time steps are output
to the solution file

linear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting linear residuals

linear_residual_end_time = # Specifies an end time to begin output on
each linear residual evaluation

linear_residual_start_time = # Specifies a start time to begin output on
each linear residual evaluation

linear_residuals = 0 # Specifies whether output occurs on each
linear residual evaluation

nonlinear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting non -linear residuals

nonlinear_residual_end_time = # Specifies an end time to begin output on
each nonlinear residual evaluation

nonlinear_residual_start_time = # Specifies a start time to begin output on

131

each nonlinear residual evaluation
nonlinear_residuals = 0 # Specifies whether output occurs on each

nonlinear residual evaluation
output_if_base_contains = # If this is supplied then output will

only be done in the case that the output
base contains one of these strings. This
is helpful in outputting only a subset of
outputs when using MultiApps.

output_linear = 0 # Specifies whether output occurs on each
linear residual evaluation

output_material_properties = 0 # Flag indicating if material properties
should be output

output_nonlinear = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

output_postprocessors = 1 # Enable/disable the output of postprocessors
oversample = 0 # Set to true to enable oversampling
overwrite = 0 # When true the latest timestep will

overwrite the existing file , so only
a single timestep exists.

padding = 3 # The number of for extension suffix (e.g.,
out.e-s002)

position = # Set a positional offset , this vector will
get added to the nodal coordinates to move
the domain.

refinements = 0 # Number of uniform refinements for
oversampling (refinement levels beyond
any uniform refinements)

scalar_as_nodal = 0 # Output scalar variables as nodal
sequence = # Enable/disable sequential file output

(enabled by default when 'use_displace
= true ', otherwise defaults to false

show = # A list of the variables and postprocessors
that should be output to the Exodus file
(may include Variables , ScalarVariables ,
and Postprocessor names).

show_material_properties = # List of materialproperties that should be
written to the output

start_time = # Time at which this output object begins to
operate

sync_only = 0 # Only export results at sync times
sync_times = # Times at which the output and solution is

forced to occur
time_tolerance = 1e-14 # Time tolerance utilized checking start and

end times
type = Exodus
use_displaced = 0 # Enable/disable the use of the displaced

mesh for outputting
use_problem_dimension = # Use the problem dimension to the mesh

output. Set to false when outputting lower
dimensional meshes embedded in a higher
dimensional space.

[../]

[./ VariableResidualNormsDebugOutput]
additional_execute_on = # This list of output flags is added to the

existing flags (initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

control_tags = # Adds user -defined labels for accessing
object parameters via control logic.

delimiter = # Assign the delimiter (default is ','
enable = 1 # Set the enabled status of the MooseObject.
end_time = # Time at which this output object stop

132

operating
execute_on = 'INITIAL TIMESTEP_END ' # Set to

(none|initial|linear|nonlinear|
timestep_end|timestep_begin|final|
failed|custom)
to execute only at that moment

interval = 1 # The interval at which time steps are output
to the solution file

linear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting linear residuals

linear_residual_end_time = # Specifies an end time to begin output on
each linear residual evaluation

linear_residual_start_time = # Specifies a start time to begin output on
each linear residual evaluation

linear_residuals = 0 # Specifies whether output occurs on each
linear residual evaluation

nonlinear_residual_dt_divisor = 1000 # Number of divisions applied to time step
when outputting non -linear residuals

nonlinear_residual_end_time = # Specifies an end time to begin output on
each nonlinear residual evaluation

nonlinear_residual_start_time = # Specifies a start time to begin output on
each nonlinear residual evaluation

nonlinear_residuals = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

output_linear = 0 # Specifies whether output occurs on each
linear residual evaluation

output_nonlinear = 0 # Specifies whether output occurs on each
nonlinear residual evaluation

#
start_time = # Time at which this output object begins to

operate
sync_only = 0 # Only export results at sync times
sync_times = # Times at which the output and solution is

forced to occur
time_tolerance = 1e-14 # Time tolerance utilized checking start and

end times
type = VariableResidualNormsDebugOutput
use_displaced = 0 # Enable/disable the use of the displaced

mesh for outputting
[../]

[]

[Outputs]
[./ checkpoint]

type = Checkpoint # Save snapshots of the simulation data
[../]
[./ console]

type = Console # Screen output
perf_log = true # Output the performance log

[../]
[./ out_displaced]

type = Exodus # Output simulation data to an ExodusII file
use_displaced = true # Use displaced mesh
execute_on = 'initial timestep_end ' # Output data at the begining of the simulation

and each time step
sequence = false # Don't save sequential file output per

time step
[../]

[]

133

5 Example Problems

In this section, several examples are given to demonstrate that how SAM is used to perform
nuclear reactor safety related thermal-hydraulics analysis with input file also provided.

5.1 Heat Conduction Problem

The 2-D radial and axial steady-state conduction equation was solved for a generic long solid
rod, as illustrated in Figure 5.1. The same case is also included in the TRACE fundamental valida-
tion cases [17]. The heat structure has a length of 20 cm and radius of 5 mm. It has a uniform heat
source of 1000 W distributed within the rod, and constant thermal conductivity of 2 W/mK. The
solid rod is immersed in a pool of water having a constant temperature of 300 K in the bottom 10
cm and 500 K in the top 10 cm. A constant heat transfer coefficient of 1000 W/m2K is applied to
the outer surface of the rod. The tabulated analytical solution values from Table A.1.2 of Reference
[17] are used here in Table 5.1 for comparison to the temperatures calculated by SAM.

q”=0

T1	=	300	K
z

r

T2=500	K

Figure 5.1: SAM model of the 2-D heat conduction problem.

134

Table 5.1: Comparison of SAM and Analytical Solutions for the Steady State Axial-Radial Heat
Conduction Problem

Location (m) Analytical (K) SAM (K) Error (K)
0 658.1 658.1 0.0

0.01 658.1 658.1 0.0
0.02 658.1 658.1 0.0
0.03 658.1 658.1 0.0
0.04 658.1 658.1 0.0
0.05 658.1 658.1 0.0
0.06 658.1 658.1 0.0
0.07 658.1 658.1 0.0
0.08 658.2 658.2 0.0
0.09 662.7 662.3 -0.4
0.1 758.1 758.1 0.0
0.11 853.9 853.9 0.0
0.12 857.9 858.0 0.1
0.13 858.1 858.1 0.0
0.14 858.1 858.1 0.0
0.15 858.1 858.1 0.0
0.16 858.1 858.1 0.0
0.17 858.1 858.1 0.0
0.18 858.1 858.1 0.0
0.19 858.1 858.1 0.0

The SAM simulation was run with Steady solver for this test case. The calculated steady-state
conditions and analytical solution of centerline temperature distributions are compared in Table 5.1
and shown in Figure 5.2. The results given in Table 5.1 demonstrate that the SAM solutions of
the 2-D heat-conduction equation are accurate. The largest errors are where temperature profile is
steepening. Note that a relative coarse mesh, 40 (20-axial and 2-radial) elements total, was used in
SAM simulations. The errors can be reduced if a finer mesh is used.

135

600

650

700

750

800

850

900

0 0.05 0.1 0.15 0.2

Ce
nt
er
lin

e	T
em

pe
ra
tu
re
	(K
)

Axial	Position

Analytical

SAM

Figure 5.2: Comparisons of centerline temperature distributions of the heated rod, 2D conduction.

The input file of this example problem is shown as follows:
[GlobalParams]

global_init_T = 400
Tsolid_sf = 1e-1
[./ PBModelParams]

p_order = 2
[../]

[]

[Functions]
[./ T_amb_fn]

type = PiecewiseLinear
x = '0 0.099 0.101 0.2'
y = '300 300 500 500'
axis = x

[../]
[]

[MaterialProperties]
[./fuel -mat]

type = SolidMaterialProps
k = 2
Cp = 100
rho = 1.0e3

[../]
[]

136

[Components]
[./ hs1]

type = PBCoupledHeatStructure
position = '0 0 0'
orientation = '0 0 1'
hs_type = cylinder

length = 0.2
radius_i = 0.0
width_of_hs = 0.005
elem_number_radial = 2
elem_number_axial = 20
dim_hs = 2
material_hs = 'fuel -mat'

heat_source_solid = 6.3661977 e7

Ts_init = 400
HS_BC_type = 'Adiabatic Convective '
T_amb_right = T_amb_fn
Hw_right = 1e3

[../]
[]

[Postprocessors]
[./ max_T]

type = NodalMaxValue
block = 'hs1:hs'
variable = T_solid

[../]
[]

[VectorPostprocessors]
[./ Tsolid]

type = NodalValueSampler
block = 'hs1:hs'
variable = T_solid
sort_by = y

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

[./ SMP_PJFNK]
type = SMP
full = true
solve_type = 'PJFNK '

[../]
[] # End preconditioning block

[Executioner]
type = Steady

petsc_options_iname = '-ksp_gmres_restart -pc_type '
petsc_options_value = '100 lu'

nl_rel_tol = 1e-9
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-5 # Relative linear tolerance for each Krylov solve
l_max_its = 100 # Number of linear iterations for each Krylov solve

[./ Quadrature]
type = SIMPSON

137

order = SECOND
[../]

[] # close Executioner section

[Outputs]
perf_graph = true
print_linear_residuals = false
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]
[./ csv]

type = CSV
[../]
[./ console]

type = Console
[../]

[]

138

5.2 Single Channel Flow

A simple pipe flow problem is presented here, with fixed constant or time-varying boundary
conditions. The inlet temperature of the one-meter pipe is fixed at 628 K, or oscillates following a
sinusoidal distribution, Tin(t) = 628+100sin(πt); the inlet velocity is fixed, uin(t)=0.5 m/s; and the
initial pipe temperate is at 628 K. After executing the test problems, the results can be imported into
Paraview for visualization, as shown in Figure 5.3. The transient responses of the inlet temperature
wave propagation problem are shown in Figure 5.4, where the code predictions agreed very well
with the analytical solutions. This is because of the high-order accuracy in both spatial and temporal
(BDF2) discretizations used in SAM.

Figure 5.3: Example of SAM results shown in Paraview.

The input file of this example problem is shown as follows:

[GlobalParams]
global_init_P = 1.0e5 # Global initial fluid pressure
global_init_V = 0.5 # Global initial temperature for fluid and solid
global_init_T = 628.15 # Global initial fluid velocity
scaling_factor_var = '1 1e-3 1e-6' # Scaling factors for fluid variables (p, v, T)

[]

[EOS]
[./ eos] # EOS name

type = PBSodiumEquationOfState # Using the sodium equation -of-state
[../]

[]

139

Figure 5.4: Transient responses of the pipe under inlet temperature oscillation, BDF2.

[Functions]
[./ tin_sine] # Function name

type = ParsedFunction # Parsed function
value = 628+100* sin(pi*t) # Parsed function formula

[../]
[]

[Components]
[./ pipe1]

type = PBOneDFluidComponent
eos = eos # The equation -of-state name
position = '0 0 0' # The origin position of this component
orientation = '0 0 1' # The orientation of the component
heat_source = 0 # Volumetric heat source
f=0.01 # Specified friction coefficient
Dh = 0.02 # Equivalent hydraulic diameter
length = 1 # Length of the component
n_elems = 100 # Number of elements used in discretization
A = 3.14e-4 # Area of the One -D fluid component

[../]

[./ inlet]
type = PBTDJ
input = 'pipe1(in)' # Name of the connected components and the end type
eos = eos # The equation -of-state
v_bc = 0.5 # Velocity boundary condition
T_bc = 628 # or T_fn = tin_sine # Temperature boundary condition

[../]

[./ outlet]

140

type = PressureOutlet
input = 'pipe1(out) ' # Name of the connected components and the end type
eos = eos # The equation -of-state
p_bc = '1.0e5' # Pressure boundary condition

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

[./ SMP_PJFNK]
type = SMP # Single -Matrix Preconditioner
full = true # Using the full set of couplings among all variables
solve_type = 'PJFNK ' # Using Preconditioned JFNK solution method
petsc_options_iname = '-pc_type ' # PETSc option , using preconditiong
petsc_options_value = 'lu' # PETSc option , using 'LU' precondition type

in Krylov solve
[../]

[] # End preconditioning block

[Executioner]
type = Transient # This is a transient simulation

dt = 0.02 # Targeted time step size
dtmin = 1e-5 # The allowed minimum time step size

petsc_options_iname = '-ksp_gmres_restart ' # Additional PETSc settings , name list
petsc_options_value = '100' # Additional PETSc settings , value list

nl_rel_tol = 1e-7 # Relative nonlinear tolerance for each Newton solve
nl_abs_tol = 1e-6 # Relative nonlinear tolerance for each Newton solve
nl_max_its = 20 # Number of nonlinear iterations for each Newton solve

l_tol = 1e-4 # Relative linear tolerance for each Krylov solve
l_max_its = 100 # Number of linear iterations for each Krylov solve

start_time = 0.0 # Physical time at the beginning of the simulation
num_steps = 200 # Max. simulation time steps
end_time = 100. # Max. physical time at the end of the simulation

[./ Quadrature]
type = TRAP # Using trapezoid integration rule
order = FIRST # Order of the quadrature

[../]
[] # close Executioner section

[Outputs]
[./ console]

type = Console # Screen output
perf_log = true # Output the performance log

[../]
[./ out_displaced]

type = Exodus # Output simulation data to an ExodusII file
use_displaced = true # Use displaced mesh
execute_on = 'initial timestep_end ' # Output data at the beginning of the simulation

and each time step
sequence = false # Don't save sequential file output per time step

[../]
[]

141

5.3 Core Channel

A simple core channel problem (coolant flow and solid conduction in fuel assembly) is presented
here with uniform power distribution inside the fuel pin. The schematic of the spatial discretization
of the core channel problem is shown in Figure 5.5. The different lines of colors on the left represent
different heat structures in an SFR fuel pin (i.e., fuel, sodium gap, and clad). The inlet of the core
channel flow is fixed at constant temperature and flow rate. Constant material thermo-physical
properties are assumed for this test. Therefore, the analytical solutions of this test problem can be
easily derived, with coolant temperature:

Tcoolant(z) = Tin +
q′

ṁcp
z (5.1)

and the fuel centerline temperature:

Tf ,cl(z) = Tin +q′
[

z
ṁcp

+
1

2πRcohc
+

1
2πkc

ln
(

Rco

Rci

)
+

1
2πR f hg

+
1

4πk f

]
(5.2)

The simulation results can be compared with the analytical solutions as an verification study.

1D	flow

1D	or	2D	structure

r

z

q’’’

q”

Figure 5.5: The schematic of the spatial discretization of the core channel problem.

The input file of this example problem is shown as follows:

[GlobalParams]
global_init_P = 1.0e5
global_init_V = 5
global_init_T = 628.15
scaling_factor_var = '1 1e-3 1e-6'

142

Tsolid_sf = 1e-3 # Scaling factors for solid temperature
[]

[EOS]
[./ eos] # EOS name

type = PTConstantEOS
p_0 = 1e5 # Pa, reference pressure
rho_0 = 865.51 # kg/mˆ3, reference density
beta = 2.7524e-4 # Kˆ{-1}, thermal expansion coefficient
cp = 1272.0 # specific heat;
h_0 = 7.9898 e5 # J/kg, enthalpy at reference temperature
T_0 = 628.15 # K, reference temperature
mu = 2.6216e-4 # Pa-s, dynamic viscosity
k = 72 # W/K/m, thermal conductivity

[../]
[]

[Materials]
[./fuel -mat] # Material name

type = SolidMaterialProps
k = 16 # Thermal conductivity
Cp = 191.67 # Specific heat
rho = 1.4583 e4 # Density

[../]
[./gap -mat] # Material name

type = SolidMaterialProps
k = 64 # Thermal conductivity
Cp = 1272 # Specific heat
rho = 865 # Density

[../]
[./clad -mat] # Material name

type = SolidMaterialProps
k = 26 # Thermal conductivity
Cp = 638 # Specific heat
rho = 7.646e3 # Density

[../]
[./duct -mat] # Material name

type = SolidMaterialProps
k = 26 # Thermal conductivity
Cp = 638 # Specific heat
rho = 6e3 # Density

[../]
[]

[Functions]
active = 'uniform '
[./ uniform] # Function name

type = PiecewiseLinear # Function type
axis = 0 # X-co-ordinate is used for x
x = '0 0.8' # The x abscissa values
y = '1 1' # The y abscissa values

[../]
[]

[Components]
[./ reactor]

type = ReactorPower
initial_power = 3e4 # Initial total reactor power

[../]
[./ CH1] # Component name

type = PBCoreChannel # PBCorechannel component
eos = eos # The equation -of-state name
position = '0 0 0'
orientation = '0 0 1'

143

A = 2e-05
Dh = 3.1830989e-3
length = 0.8
n_elems = 16

f = 0.017 # User specified friction coefficient
Hw = 1.6e5 # User specified heat transfer coefficient
HT_surface_area_density = 1256.637 # Heat transfer surface area density , Ph/Ac

name_of_hs = 'fuel gap clad' # Heat structure names
Ts_init = 628.15 # Initial structure temperature
n_heatstruct = 3 # Number of heat structures
fuel_type = cylinder # Fuel geometric type , cylinder or plate
width_of_hs = '0.003015 0.000465 0.00052 ' # The width of all heat structures
elem_number_of_hs = '20 2 2' # The element numbers of all heat structures
material_hs = 'fuel -mat gap -mat clad -mat' # The material used for all heat structures
power_fraction = '1.0 0.0 0.0' # The power fractions of all heat structures
power_shape_function = uniform # the axial power shape function name

[../]

#Boundary components
[./ inlet]

type = PBTDJ
input = 'CH1(in)'
v_bc = 8.6654
T_bc = 628.15
eos = eos

[../]
[./ outlet]

type = PBTDV
input = 'CH1(out)'
p_bc = '2.0e5'
T_bc = 728.15
eos = eos

[../]
[]

[Postprocessors]
[./ max_Tcoolant] # Output maximum fluid temperature of block CH1:pipe

type = NodalMaxValue
block = 'CH1:pipe'
variable = temperature

[../]
[./ max_Tw] # Output maximum wall temperature of block CH1:pipe

type = NodalMaxValue
block = 'CH1:pipe'
variable = Tw

[../]
[./ max_Tclad] # Output maximum solid temperature of block CH1:solid:clad

type = NodalMaxValue
block = 'CH1:solid:clad'
variable = T_solid

[../]
[./ max_Tf] # Output maximum solid temperature of block CH1: solid:fuel

type = NodalMaxValue
block = 'CH1:solid:fuel'
variable = T_solid

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

144

[./ SMP_PJFNK]
type = SMP
full = true
solve_type = 'PJFNK '
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'

[../]

[] # End preconditioning block

[Executioner]
type = Steady

petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '300'

nl_rel_tol = 1e-9
nl_abs_tol = 1e-7
nl_max_its = 20

l_tol = 1e-5
l_max_its = 50

[./ Quadrature]
type = TRAP
order = FIRST

[../]
[] # close Executioner section

[Outputs]
[./ out]

type = Checkpoint # Save snapshots of the simulation data
[../]
[./ console]

type = Console
perf_log = true

[../]
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]
[]

145

5.4 Heat Exchanger

An example of a counter-current heat exchanger problem is presented here. The inlet tempera-
tures are 783 K and 606 K for the primary and secondary pipes. The mass flow rates are also fixed at
the inlets of the two sides. Because the flow rates are very close for the two sides, linear temperature
distributions are expected for the two sides, as the code predictions shown in Figure 5.6.

600
620
640
660
680
700
720
740
760
780
800

0 1 2 3

Te
m

pe
ra

tu
re

 (
K

)

Axial Position (m)

primary
secondary

Figure 5.6: Temperature distribution of a counter-current heat exchanger.

The input file of this example problem is shown as follows:
[GlobalParams]

global_init_P = 1.0e5
global_init_V = 1
global_init_T = 628.15
scaling_factor_var = '1 1e-3 1e-6'
Tsolid_sf = 1e-3

[]

[EOS]
[./ eos]

type = PBSodiumEquationOfState
[../]

[]

[Materials]
[./ss -mat]

type = SolidMaterialProps
k = 10
Cp = 638
rho = 6e3

[../]
[]

[Components]
[./ IHX]

146

type = PBHeatExchanger
eos = eos # EOS of the primary side
eos_secondary = eos # EOS of the secondary side
position = '0 0 0'
orientation = '1 0 0'
A = 0.766 # Flow area of the primary side
A_secondary = 0.517 # Flow area of the secondary side
Dh = 0.0186 # Hydraulic diameter of the primary side
Dh_secondary = 0.014 # Hydraulic diameter of the secondary side
length = 3.71
n_elems = 20

Hw = 1.6129 e5 # User specified heat transfer coefficient
for primary pipe

Hw_secondary = 1.6129 e5 # User specified heat transfer coefficient
for secondary pipe

HTC_geometry_type = Pipe # Geometry type of the primary pipe ,
pipe or bundle

HTC_geometry_type_secondary = Pipe # Geometry type of the secondary pipe
HT_surface_area_density = 729 # Heat transfer surface area of the

primary side , Ph/Ac
HT_surface_area_density_secondary = 1080.1 # Heat transfer surface area of the

secondary side , Ph/Ac

f = 0.022 # User specified friction coefficient for primary pipe
f_secondary = 0.022 # User specified friction coefficient for secondary pipe
initial_V_secondary = -2 # Initial velocity for secondary pipe

Twall_init = 628.15 # Initial wall temperature
wall_thickness = 0.0033 # Wall thickness

dim_wall = 1 # Dimensions of the wall , 1D or 2D
material_wall = ss-mat # Wall material
n_wall_elems = 2 # The number of elements in the radial direction

[../]

[./ inlet1]
type = PBTDJ
input = 'IHX(primary_in)'
eos = eos
v_bc = 2
T_bc = 783.15

[../]

[./ outlet1]
type = PressureOutlet
input = 'IHX(primary_out)'
eos = eos
p_bc = 1.0e5

[../]

[./ inlet2]
type = PBTDJ
input = 'IHX(secondary_in)'
eos = eos
v_bc = -2
T_bc = 606.15

[../]

[./ outlet2]
type = PressureOutlet
input = 'IHX(secondary_out)'
eos = eos
p_bc = 1.0e5

147

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

[./ SMP_PJFNK]
type = SMP
full = true
solve_type = 'PJFNK '
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'

[../]

[] # End preconditioning block

[Postprocessors]
The total heat removal rate at the primary side of IHX
[./ heat_removal_primary]

type = HeatExchangerHeatRemovalRate
block = IHX:primary_pipe
heated_perimeter = 558.414

[../]
The total heat removal rate at the secondary side of IHX
[./ heat_removal_secondary]

type = HeatExchangerHeatRemovalRate
block = IHX:secondary_pipe
heated_perimeter = 558.414

[../]
[]

[Executioner]
type = Transient # try Steady solver as well

dt = 0.2
dtmin = 1e-4

petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '101'

nl_rel_tol = 1e-8
nl_abs_tol = 1e-6
nl_max_its = 30

l_tol = 1e-4
l_max_its = 100

start_time = 0.0
num_steps = 10
end_time = 100.

[./ Quadrature]
type = TRAP
order = FIRST

[../]
[] # close Executioner section

[Outputs]
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]

148

[./ console]
type = Console
perf_log = true

[../]
[]

149

5.5 Volume Branch

An example problem with a VolumeBranch component included is presented here. The bound-
ary and the initial conditions of the five pipes are shown in Figure 5.7 and Figure 5.8. Note that
very different inlet orifice coefficients have been used for the connecting nodes. The volume of the
PBVolumeBranch is 0.0314 m3, and the initial temperature of the volume is at 628.15 K. Because
Pipe 3 has very high inlet flow rate but low inlet temperature, the temperature at the VolumeBranch,
outlet of Pipes 4 and 5 will decrease correspondingly, as shown in Figure 5.9.

PBVolumeBranch
Pout

Pout

Vin,	Tin

Vin,	Tin

Vin,	Tin Pipe	3

Pipe	2

Pipe	1

Pipe	4

Pipe	5

Figure 5.7: The three-pipe-in and two-pipe-out VolumeBranch test model.

150

Component Pipe 1 Pipe 2 Pipe 3 Pipe 4 Pipe 5

Length (m) 1 1 1 1 1

Diameter (m) 0.02 0.02 0.02 0.02 0.02

Boundary Type Flow inlet Flow inlet Flow inlet
Pressure

outlet
Pressure outlet

Orifice Coeff. to

VolumeBranch
0.01 0.01 0.01 0.01 100

Z-coordinate of the node

connected to

VolumeBranch (m)

0 0.25 0.75 1 0.5

Boundary Conditions

Vin =1 m/s

Tin =

628.15K

Vin =1 m/s

Tin =

628.15K

Vin =10 m/s

Tin =

528.15K

Pout = 105 Pa

Tout =

628.15K

Pout = 1.5 ×105

Pa

Tout = 628.15K

Initial Conditions

Pressure (Pa) 1.5×105

Velocity (m/s) 1

Temperature (K) 628.15

Figure 5.8: Input parameters of the three pipe in and two pipe out VolumeBranch test model.

610

612

614

616

618

620

622

624

626

628

630

0 0.5 1 1.5 2

Te
m
pe
ra
tu
re
	(K

)

Time	(s)

VolumeBranch

Pipe	4	Outlet

Pipe	5	Outlet

Figure 5.9: Transient temperature response at the VolumeBranch and pipe outlets.

The input file of this example problem is shown as follows:
[GlobalParams]

151

global_init_P = 1.2e5
global_init_V = 1
global_init_T = 628.15
scaling_factor_var = '1 1e-3 1e-6'

[]

[EOS]
active = 'eos'
[./ eos]

type = PBSodiumEquationOfState
[../]

[]

[Components]
[./ pipe1]

type = PBOneDFluidComponent
eos = eos
position = '0 0 0'
orientation = '0 0 1'

A = 3.14e-4
Dh = 0.02
length = 1
n_elems = 10
f = 0.01
Hw = 0

[../]

[./ pipe2]
type = PBOneDFluidComponent
eos = eos
position = ' -1.5 0 1.25'
orientation = '1 0 0'

A = 3.14e-4
Dh = 0.02
length = 1
n_elems = 10
f = 0.01
Hw = 0

[../]

[./ pipe3]
type = PBOneDFluidComponent
eos = eos
position = ' -1.5 0 1.75'
orientation = '1 0 0'
initial_T = 528.15

A = 3.14e-4
Dh = 0.02
length = 1
n_elems = 10
f = 0.01
Hw = 0

[../]

[./ pipe4]
type = PBOneDFluidComponent
eos = eos
position = '0 0 2'
orientation = '0 0 1'

A = 3.14e-4

152

Dh = 0.02
length = 1
n_elems = 10
f = 0.01
Hw = 0

[../]

[./ pipe5]
type = PBOneDFluidComponent
eos = eos
position = '0.5 0 1.5'
orientation = '1 0 0'

A = 3.14e-4
Dh = 0.02
length = 1
n_elems = 10
f = 0.01
Hw = 0

[../]

[./ branch1]
type = PBVolumeBranch
eos = eos
center = '0 0 1.5' # The center or reference position of the volume branch

inputs = 'pipe1(out) pipe2(out) pipe3(out)'# The input connections of the volume branch
outputs = 'pipe4(in) pipe5(in)' # The output connections of the volume branch
K = '0.01 0.01 0.01 0.01 100' # The form loss coefficient at all connections

Area = 3.14e-2 # Reference flow area
volume = 3.14e-2 # Total volume
initial_T = 628.15 # Initial volume temperature

[../]

[./ inlet1]
type = PBTDJ
input = 'pipe1(in)'
eos = eos
v_bc = 1.0
T_bc = 628.15

[../]
[./ inlet2]

type = PBTDJ
input = 'pipe2(in)'
eos = eos
v_bc = 1.0
T_bc = 628.15

[../]
[./ inlet3]

type = PBTDJ
input = 'pipe3(in)'
eos = eos
v_bc = 10.0
T_bc = 528.15

[../]
[./ outlet1]

type = PBTDV
input = 'pipe4(out)'
eos = eos
p_bc = '1.0e5'
T_bc = 628.15

[../]
[./ outlet2]

153

type = PBTDV
input = 'pipe5(out)'
eos = eos
p_bc = '1.5e5'
T_bc = 628.15

[../]
[]

[Preconditioning]
[./ SMP_PJFNK]

type = SMP
full = true
solve_type = 'PJFNK '
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'

[../]
[] # End preconditioning block

[Executioner]
type = Transient

dt = 1e-1
dtmin = 1e-5

setting time step range
Time step size is controlled by this TimeStepper
[./ TimeStepper]

type = FunctionDT
time_t = ' 0 0.1 0.2 20 21 100 101 1e5' # Physical time
time_dt ='0.01 0.01 0.1 0.1 0.5 0.5 1 1' # Time step size dependent on

the physical time
[../]

petsc_options_iname = '-ksp_gmres_restart '
petsc_options_value = '100'

nl_rel_tol = 1e-8
nl_abs_tol = 1e-7
nl_max_its = 20

l_tol = 1e-5
l_max_its = 100

start_time = 0.0
num_steps = 100
end_time = 2.

[./ Quadrature]
type = TRAP
order = FIRST

[../]
[] # close Executioner section

[Outputs]
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]

[./ console]
type = Console
perf_log = true

154

[../]
[]

155

5.6 A Simple Loop Model

An example problem with a simple loop problem is presented here. It consists of six 1-D
pipes (PBOneDFluidComponent) and a heat exchanger (PBHeatExchanger). One pipe is internally
heated, as shown in Figure 5.10. The primary loop (including the heat exchanger) is connected by a
set of PBSingleJunctions, a PBBranch, and a Pump. The secondary side of the heat exchanger has
fixed inlet velocity and temperature and fixed outlet pressure boundary conditions. Note that if the
Pump is replaced by a PBBranch, the loop will be derived by natural circulation.

 TDV

 TDJ

 TDV

Pump%

Heated%

HX%

Figure 5.10: Schematics of the a test loop problem.

The input file of this example problem is shown as follows:
[GlobalParams]

global_init_P = 1.1e5
global_init_V = 0.1
global_init_T = 628.15
Tsolid_sf = 1e-1

[./ PBModelParams]
pbm_scaling_factors = '1 1e-3 1e-6'

[../]
[]

[EOS]
[./ eos]

type = PBSodiumEquationOfState
[../]

[]

[Materials]
[./ss -mat]

156

type = SolidMaterialProps
k = 20
Cp = 638
rho = 6e3

[../]
[]

[Components]
[./ pipe1]

type = PBOneDFluidComponent
eos = eos
position = '0 1 0'
orientation = '0 -1 0'

A = 0.44934
Dh = 2.972e-3
length = 1
n_elems = 10
f = 0.001

[../]

[./ CH1]
type = PBOneDFluidComponent
eos = eos
position = '0 0 0'
orientation = '0 0 1'

A = 0.44934
Dh = 2.972e-3
length = 0.8
n_elems = 10

f = 0.022 #McAdams
heat_source = 5e7

[../]

[./ pipe2]
type = PBOneDFluidComponent
eos = eos
position = '0 0 0.8'
orientation = '0 0 1'

A = 0.44934
Dh = 2.972e-3
length = 5.18
n_elems = 10
f = 0.001

[../]

[./ pipe3]
type = PBOneDFluidComponent
eos = eos
position = '0 0 5.98'
orientation = '0 1 0'

A = 0.44934
Dh = 2.972e-3
length = 1
n_elems = 10
f = 0.001

[../]

[./ IHX]
type = PBHeatExchanger

157

eos = eos
eos_secondary = eos

position = '0 0.976 5.98'
orientation = '0 0 -1'
A = 0.44934
Dh = 0.0186
A_secondary = 0.44934
Dh_secondary = 0.0186
length = 0.8
n_elems = 20
f = 0.022

initial_V_secondary = -0.2

HT_surface_area_density = 1e3
HT_surface_area_density_secondary = 1e3

Twall_init = 628.15
wall_thickness = 0.004

dim_wall = 1
material_wall = ss-mat
n_wall_elems = 2

[../]

[./ pipe4]
type = PBOneDFluidComponent
eos = eos
position = '0 1.0 5.18'
orientation = '0 0 -1'

A = 0.44934
Dh = 2.972e-3
length = 5.18
n_elems = 10
f = 0.001

[../]

[./ Branch1]
type = PBSingleJunction
inputs = 'pipe1(out)'
outputs = 'CH1(in) '
eos = eos

[../]
[./ Branch2]

type = PBSingleJunction
inputs = 'CH1(out) '
outputs = 'pipe2(in)'
eos = eos

[../]
[./ Branch3]

type = PBBranch
inputs = 'pipe2(out)'
outputs = 'pipe3(in) pipe5(in)'
K = '0.0 0.0 10.0'
Area = 0.44934
initial_P = 1e5
eos = eos

[../]
[./ Branch4]

type = PBSingleJunction
inputs = 'pipe3(out)'
outputs = 'IHX(primary_in)'

158

eos = eos
[../]
[./ Branch5]

type = PBSingleJunction
inputs = 'IHX(primary_out)'
outputs = 'pipe4(in)'
eos = eos

[../]

switch between Brach6 and Pump_p for natural circulation or forced flow

[./ Pump_p]
type = PBPump # This is a PBPump component
eos = eos
inputs = 'pipe4(out)'
outputs = 'pipe1(in)'
K = '1. 1.' # Form loss coefficient at pump inlet and outlet
Area = 0.44934 # Reference pump flow area
initial_P = 1.5e5 # Initial pressure
Head = 5e3 # Pump head , Pa
[../]

[./ Branch6]
type = PBSingleJunction
inputs = 'pipe4(out)'
outputs = 'pipe1(in)'
eos = eos

[../]

[./ pipe5]
type = PBOneDFluidComponent
eos = eos
position = '0 0 5.98'
orientation = '0 0 1'
A = 0.44934
Dh = 2.972e-3
length = 0.1
n_elems = 2
f = 0.001

[../]
[./ p_out]

type = PressureOutlet
input = 'pipe5(out)'
eos = eos
p_bc = '1e5'

[../]

[./ inlet2]
type = PBTDJ
input = 'IHX(secondary_in)'
eos = eos
v_bc = -1
T_bc = 606.15

[../]

[./ outlet2]
type = PressureOutlet
input = 'IHX(secondary_out)'
eos = eos
p_bc = 1.0e5

[../]
[]

[Postprocessors]

159

Output mass flow rate at inlet of CH1
[./ CH1_flow]

type = ComponentBoundaryFlow
input = CH1(in)

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '
[./ SMP_PJFNK]

type = SMP
full = true
solve_type = 'PJFNK '
petsc_options_iname = '-pc_type -ksp_gmres_restart '
petsc_options_value = 'lu 101'

[../]
[]

[Executioner]
type = Steady

nl_rel_tol = 1e-8
nl_abs_tol = 1e-7
nl_max_its = 20
l_tol = 1e-6
l_max_its = 100

[./ Quadrature]
type = TRAP
order = FIRST

[../]
[]

[Outputs]
print_linear_residuals = false
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]

[./ console]
type = Console
perf_log = true

[../]
[]

160

5.7 A Simplified SFR Model

A typical pool-type SFR test problem is presented here, based on the design information of the
Advanced Burner Test Reactor (ABTR) conceptual design [18]. Figure 5.11 shows the schematics
of the test SFR model. The primary coolant system consists of the downcomers (pump outlet and
pump discharge), the lower plenum, the reactor core model, the upper plenum, and the intermediate
heat exchanger. Five PBCoreChannels are used to describe the reactor core. PBLiquidVolume com-
ponents are used to represent the cold pool and the upper plenum. Both are connected to a CoverGas
component. Different components are connected with junction Components. The intermediate loop,
the secondary loop, and the DRACS loop are modeled with great simplicities. Single-phase counter
current heat exchanger models (PBHeatExchanger) are used to mimic the function of the intermedi-
ate loop heat exchanger (IHX), DRACS heat exchanger (DHX), and secondary loop heat exchanger
(SHX) to transfer heat among the primary, intermediate, secondary, and the DRACS loops.

TDV$

TDJ$

DHX$

Cold$Pool$
Inlet$Plenum$

Outlet$Plenum$
(Hot$Pool)$

TDV$

TDJ$

Pump$

IHX$ Na9CO2$
HX$

Core$
Channels$

TDV$

Figure 5.11: Schematics of the a simple pool-type SFR model.

The input file of this example problem is shown as follows:

[GlobalParams]
global_init_P = 2e5
global_init_V = 0.1
global_init_T = 628.15
Tsolid_sf = 1e-3

[./ PBModelParams]
pbm_scaling_factors = '1 1e-3 1e-6'

161

pspg = false
p_order = 2

[../]
[]

[EOS]
[./ eos]

type = PBSodiumEquationOfState
[../]

[]

[Functions]
[./ ppf_axial]

type = PiecewiseLinear
x = '0.0 0.0200 0.0600 0.100 0.140 0.180 0.220 0.260 0.300 0.340 0.380

0.420 0.460 0.500 0.540 0.580 0.620 0.660 0.700 0.740 0.780 0.800'
y = '7.818e-1 8.12035e-1 8.72501e-1 9.43054e-1 1.01107 1.04739 1.09779 1.13790
1.16662 1.17569 1.18022

1.17255 1.15267 1.13305 1.08829 1.03142 9.62681e-1 9.08601e-1 8.11380e-1
7.04156e-1 5.90929e-1 5.34316e-1'

axis = 0
[../]

[./ power_history]
type = PiecewiseLinear

x =' -1.000E+03 5.000E-01 1.000E+00 1.500E+00 2.000E+00 2.500E+00 3.000E+00
3.500E+00 4.000E+00 4.500E+00

5.000E+00 5.500E+00 6.000E+00 6.500E+00 7.000E+00 7.500E+00 8.000E+00 8.500E+00
9.000E+00 9.500E+00

1.000E+01 1.050E+01 1.100E+01 1.150E+01 1.200E+01 1.250E+01 1.300E+01 1.350E+01
1.400E+01 1.450E+01

1.500E+01 1.550E+01 1.600E+01 1.650E+01 1.700E+01 1.750E+01 1.800E+01 1.850E+01
1.900E+01 1.950E+01

2.000E+01 2.500E+01 3.000E+01 3.500E+01 4.000E+01 4.500E+01 5.000E+01 5.500E+01
6.000E+01 6.500E+01

7.000E+01 7.500E+01 8.000E+01 8.500E+01 9.000E+01 9.500E+01 1.000E+02 1.100E+02
1.200E+02 1.300E+02

1.400E+02 1.500E+02 1.600E+02 1.700E+02 1.800E+02 1.900E+02 2.000E+02 2.100E+02
2.200E+02 2.300E+02

2.400E+02 2.500E+02 2.600E+02 2.700E+02 2.800E+02 2.900E+02 3.000E+02 3.200E+02
3.400E+02 3.600E+02

3.800E+02 4.000E+02 4.500E+02 5.000E+02 5.500E+02 6.000E+02 6.500E+02 7.500E+02
1.000E+03 2.000E+03

4.000E+03 6.000E+03 8.000E+03 1.000E+04 1.500E+04 2.000E+04 2.500E+04 3.000E+04
3.500E+04 4.000E+04 1e5'

y ='1.000E+00 1.000E+00 9.969E-01 9.892E-01 9.784E-01 1.537E-01 1.390E-01
1.292E-01 1.215E-01 1.152E-01

1.097E-01 1.050E-01 1.008E-01 9.710E-02 9.377E-02 9.077E-02 8.807E-02 8.561E-02
8.337E-02 8.132E-02

7.944E-02 7.771E-02 7.611E-02 7.463E-02 7.325E-02 7.197E-02 7.077E-02 6.964E-02
6.858E-02 6.758E-02

6.663E-02 6.574E-02 6.489E-02 6.408E-02 6.331E-02 6.258E-02 6.187E-02 6.120E-02
6.055E-02 5.993E-02

5.933E-02 5.431E-02 5.049E-02 4.741E-02 4.485E-02 4.267E-02 4.078E-02 3.914E-02
3.769E-02 3.640E-02

3.526E-02 3.425E-02 3.334E-02 3.252E-02 3.178E-02 3.111E-02 3.051E-02 2.946E-02
2.858E-02 2.784E-02

2.720E-02 2.665E-02 2.617E-02 2.575E-02 2.537E-02 2.502E-02 2.471E-02 2.443E-02
2.417E-02 2.393E-02

2.370E-02 2.349E-02 2.329E-02 2.310E-02 2.292E-02 2.276E-02 2.259E-02 2.229E-02
2.201E-02 2.175E-02

2.151E-02 2.128E-02 2.076E-02 2.029E-02 1.987E-02 1.948E-02 1.912E-02 1.847E-02
1.715E-02 1.395E-02

162

1.112E-02 9.789E-03 8.994E-03 8.448E-03 7.579E-03 7.040E-03 6.657E-03 6.359E-03
6.117E-03 5.911E-03 4e-3'

[../]

[./ pump_p_coastdown]
type = PiecewiseLinear

x =' -1.000E+03 0.00E+00 4.00E-01 8.00E-01 1.20E+00 1.60E+00 2.00E+00 2.40E+00
2.80E+00 3.20E+00 3.60E+00

4.00E+00 4.40E+00 4.80E+00 5.20E+00 5.60E+00 6.00E+00 6.40E+00 6.80E+00
7.20E+00 7.60E+00

8.000E+00 1.000E+01 2.000E+01 3.000E+01 4.000E+01 5.000E+01 6.000E+01 7.000E+01
8.000E+01 9.000E+01

1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02
1.800E+02 1.900E+02

2.000E+02 2.100E+02 2.200E+02 2.300E+02 2.400E+02 2.500E+02 2.600E+02 2.700E+02
2.800E+02 2.900E+02

3.000E+02 3.100E+02 3.200E+02 3.300E+02 3.400E+02 3.500E+02 3.600E+02 3.700E+02
3.800E+02 3.900E+02

4.000E+02 4.100E+02 4.200E+02 1.00E+05'

y ='1.000E+00 1.000E+00 9.671E-01 9.355E-01 9.050E-01 8.757E-01 8.476E-01
8.205E-01 7.945E-01 7.695E-01 7.455E-01

7.225E-01 7.004E-01 6.792E-01 6.590E-01 6.395E-01 6.209E-01 6.031E-01 5.860E-01
5.697E-01 5.540E-01

5.396E-01 4.749E-01 2.753E-01 1.773E-01 1.219E-01 8.812E-02 6.655E-02 5.206E-02
4.181E-02 3.425E-02

2.850E-02 2.401E-02 2.043E-02 1.754E-02 1.516E-02 1.317E-02 1.151E-02 1.009E-02
8.869E-03 7.816E-03

6.898E-03 6.094E-03 5.382E-03 4.752E-03 4.192E-03 3.692E-03 3.253E-03 2.814E-03
2.480E-03 2.132E-03

1.866E-03 1.621E-03 1.397E-03 1.190E-03 9.999E-04 8.248E-04 6.642E-04 5.175E-04
3.841E-04 2.637E-04

1.558E-04 5.989E-05 0 0'

scale_factor = 415100
[../]

[./ pump_s_coastdown]
type = PiecewiseLinear

x =' -1.000E+03 0.00E+00 4.00E-01 8.00E-01 1.20E+00 1.60E+00 2.00E+00 2.40E+00
2.80E+00 3.20E+00 3.60E+00

4.00E+00 4.40E+00 4.80E+00 5.20E+00 5.60E+00 6.00E+00 6.40E+00 6.80E+00
7.20E+00 7.60E+00

8.000E+00 1.000E+01 2.000E+01 3.000E+01 4.000E+01 5.000E+01 6.000E+01 7.000E+01
8.000E+01 9.000E+01

1.000E+02 1.100E+02 1.200E+02 1.300E+02 1.400E+02 1.500E+02 1.600E+02 1.700E+02
1.800E+02 1.900E+02

2.000E+02 2.100E+02 2.200E+02 2.300E+02 2.400E+02 2.500E+02 2.600E+02 2.700E+02
2.800E+02 2.900E+02

3.000E+02 3.100E+02 3.200E+02 3.300E+02 3.400E+02 3.500E+02 3.600E+02 3.700E+02
3.800E+02 3.900E+02

4.000E+02 4.100E+02 4.200E+02 1.00E+05'

y ='1.000E+00 1.000E+00 9.671E-01 9.355E-01 9.050E-01 8.757E-01 8.476E-01
8.205E-01 7.945E-01 7.695E-01 7.455E-01

7.225E-01 7.004E-01 6.792E-01 6.590E-01 6.395E-01 6.209E-01 6.031E-01 5.860E-01
5.697E-01 5.540E-01

5.396E-01 4.749E-01 2.753E-01 1.773E-01 1.219E-01 8.812E-02 6.655E-02 5.206E-02
4.181E-02 3.425E-02

2.850E-02 2.401E-02 2.043E-02 1.754E-02 1.516E-02 1.317E-02 1.151E-02 1.009E-02
8.869E-03 7.816E-03

6.898E-03 6.094E-03 5.382E-03 4.752E-03 4.192E-03 3.692E-03 3.253E-03 2.814E-03
2.480E-03 2.132E-03

1.866E-03 1.621E-03 1.397E-03 1.190E-03 9.999E-04 8.248E-04 6.642E-04 5.175E-04

163

3.841E-04 2.637E-04
1.558E-04 5.989E-05 0 0'

scale_factor = 40300
[../]

[./ flow_secondary]
type = PiecewiseLinear
x =' -1.000E+03 0 1 1e5'
y = ' -1259 -1259 0 0'
scale_factor = 0.002216 # 1/rhoA

[../]

[./ flow_dhx]
type = PiecewiseLinear
x =' -1.000E+03 0 1 1e5'
y = '0 0 -6.478 -6.478'
scale_factor = 0.046 # 1/rhoA

[../]
[]

[Materials]
[./fuel -mat]

type = HeatConductionMaterialProps
k = 29.3
Cp = 191.67
rho = 1.4583 e4

[../]
[./gap -mat]

type = HeatConductionMaterialProps
k = 64
Cp = 1272
rho = 865

[../]
[./clad -mat]

type = HeatConductionMaterialProps
k = 26.3
Cp = 638
rho = 7.646e3

[../]
[./ss -mat]

type = HeatConductionMaterialProps
k = 26.3
Cp = 638
rho = 7.646e3

[../]
[]

[Components]
[./ reactor]

type = ReactorPower
initial_power = 250e6
decay_heat = power_history

[../]

Primary Loop

[./ CH1]
type = PBCoreChannel
eos = eos
position = '0 -1 0'
orientation = '0 0 1'

A = 4.9237e-3

164

Dh = 2.972e-3
length = 0.8
n_elems = 4

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model
HT_surface_area_density = 1107.8

dim_hs = 1
name_of_hs = 'fuel gap clad'
Ts_init = 628.15
n_heatstruct = 3
fuel_type = cylinder
width_of_hs = '0.003015 0.000465 0.00052 '
elem_number_of_hs = '2 1 1'
material_hs = 'fuel -mat gap -mat clad -mat'

power_fraction = '0.02248 0.0 0.0'
power_shape_function = ppf_axial

[../]

[./ CH1_LP]
type = PBPipe
eos = eos
position = '0 -1 -0.6'
orientation = '0 0 1'

A = 4.9237e-3
Dh = 2.972e-3
length = 0.6
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005 #0.002
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]

[./ CH1_UP]
type = PBPipe
eos = eos
position = '0 -1 0.8'
orientation = '0 0 1'

A = 4.9237e-3
Dh = 2.972e-3
length = 1.5
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1

165

Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ Branch_CH1_L]

type = PBSingleJunction
inputs = 'CH1_LP(out)'
outputs = 'CH1(in)'
eos = eos

[../]
[./ Branch_CH1_U]

type = PBSingleJunction
inputs = 'CH1(out)'
outputs = 'CH1_UP(in)'
eos = eos

[../]

[./ CH2]
type = PBCoreChannel
eos = eos
position = '0 -0.5 0'
orientation = '0 0 1'

A = 0.11323
Dh = 2.972e-3
length = 0.8
n_elems = 4

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model
HT_surface_area_density = 1107.8

dim_hs = 1
name_of_hs = 'fuel gap clad'
Ts_init = 628.15
n_heatstruct = 3
fuel_type = cylinder
width_of_hs = '0.003015 0.000465 0.00052 '
elem_number_of_hs = '2 1 1'
material_hs = 'fuel -mat gap -mat clad -mat'

power_fraction = '0.41924 0.0 0.0'
power_shape_function = ppf_axial

[../]
[./ CH2_LP]

type = PBPipe
eos = eos
position = '0 -0.5 -0.6'
orientation = '0 0 1'

A = 0.11323
Dh = 2.972e-3
length = 0.6
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

166

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ CH2_UP]

type = PBPipe
eos = eos
position = '0 -0.5 0.8'
orientation = '0 0 1'

A = 0.11323
Dh = 2.972e-3
length = 1.5
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ Branch_CH2_L]

type = PBSingleJunction
inputs = 'CH2_LP(out)'
outputs = 'CH2(in)'
eos = eos

[../]
[./ Branch_CH2_U]

type = PBSingleJunction
inputs = 'CH2(out)'
outputs = 'CH2_UP(in)'
eos = eos

[../]

[./ CH3]
type = PBCoreChannel
eos = eos
position = '0 0 0'
orientation = '0 0 1'

A = 0.029539
Dh = 2.972e-3
length = 0.8
n_elems = 4

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model
HT_surface_area_density = 1107.8

dim_hs = 1
name_of_hs = 'fuel gap clad'
Ts_init = 628.15

167

n_heatstruct = 3
fuel_type = cylinder
width_of_hs = '0.003015 0.000465 0.00052 '
elem_number_of_hs = '2 1 1'
material_hs = 'fuel -mat gap -mat clad -mat'

power_fraction = '0.09852 0.0 0.0'
power_shape_function = ppf_axial

[../]
[./ CH3_LP]

type = PBPipe
eos = eos
position = '0 0 -0.6'
orientation = '0 0 1'

A = 0.029539
Dh = 2.972e-3
length = 0.6
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ CH3_UP]

type = PBPipe
eos = eos
position = '0 0 0.8'
orientation = '0 0 1'

A = 0.029539
Dh = 2.972e-3
length = 1.5
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ Branch_CH3_L]

type = PBSingleJunction
inputs = 'CH3_LP(out)'
outputs = 'CH3(in)'
eos = eos

[../]
[./ Branch_CH3_U]

168

type = PBSingleJunction
inputs = 'CH3(out)'
outputs = 'CH3_UP(in)'
eos = eos

[../]

[./ CH4]
type = PBCoreChannel
eos = eos
position = '0 0.5 0'
orientation = '0 0 1'

A = 0.14769
Dh = 2.972e-3
length = 0.8
n_elems = 4

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model
HT_surface_area_density = 1107.8

dim_hs = 1
name_of_hs = 'fuel gap clad'
Ts_init = 628.15
n_heatstruct = 3
fuel_type = cylinder
width_of_hs = '0.003015 0.000465 0.00052 '
elem_number_of_hs = '2 1 1'
material_hs = 'fuel -mat gap -mat clad -mat'

power_fraction = '0.43116 0.0 0.0'
power_shape_function = ppf_axial

[../]
[./ CH4_LP]

type = PBPipe
eos = eos
position = '0 0.5 -0.6'
orientation = '0 0 1'

A = 0.14769
Dh = 2.972e-3
length = 0.6
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ CH4_UP]

type = PBPipe
eos = eos
position = '0 0.5 0.8'
orientation = '0 0 1'

169

A = 0.14769
Dh = 2.972e-3
length = 1.5
n_elems = 2
radius_i = 0.02

lam_factor = 1.406
turb_factor = 1.12933
HTC_geometry_type = Pipe # pipe model

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.0005
n_wall_elems = 1
HT_surface_area_density_wall = 1107.8
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ Branch_CH4_L]

type = PBSingleJunction
inputs = 'CH4_LP(out)'
outputs = 'CH4(in)'
eos = eos

[../]
[./ Branch_CH4_U]

type = PBSingleJunction
inputs = 'CH4(out)'
outputs = 'CH4_UP(in)'
eos = eos

[../]

[./ CH5]
type = PBCoreChannel
eos = eos
position = '0 1 0'
orientation = '0 0 1'

A = 0.153955129
Dh = 1.694e-3
length = 0.8
n_elems = 4

HTC_geometry_type = Pipe # pipe model
HT_surface_area_density = 2113.6

dim_hs = 1
name_of_hs = 'fuel clad'
Ts_init = 628.15
n_heatstruct = 2
fuel_type = cylinder
width_of_hs = '6.32340e-3 7.0260e-4'
elem_number_of_hs = '2 1'
material_hs = 'fuel -mat clad -mat'

power_fraction = '0.02860 0.0'
power_shape_function = ppf_axial

[../]
[./ CH5_LP]

type = PBPipe
eos = eos
position = '0 1 -0.6'
orientation = '0 0 1'

170

A = 0.153955129
Dh = 1.694e-3
length = 0.6
n_elems = 2
radius_i = 0.02

HTC_geometry_type = Pipe # pipe model
HT_surface_area_density_wall = 2113.6

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.001 #0.0035
n_wall_elems = 1
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ CH5_UP]

type = PBPipe
eos = eos
position = '0 1 0.8'
orientation = '0 0 1'

A = 0.153955129
Dh = 1.694e-3

length = 1.5
n_elems = 2
radius_i = 0.02

HTC_geometry_type = Pipe # pipe model
HT_surface_area_density_wall = 2113.6

dim_wall = 1
Twall_init = 628.15
wall_thickness = 0.001 #0.0035
n_wall_elems = 1
material_wall = ss-mat
HS_BC_type = Adiabatic

[../]
[./ Branch_CH5_L]

type = PBSingleJunction
inputs = 'CH5_LP(out)'
outputs = 'CH5(in)'
eos = eos

[../]
[./ Branch_CH5_U]

type = PBSingleJunction
inputs = 'CH5(out)'
outputs = 'CH5_UP(in)'
eos = eos

[../]

[./ IHX]
type = PBHeatExchanger
eos = eos
eos_secondary = eos
position = '0 1.5 5.88'
orientation = '0 0 -1'
A = 0.766
A_secondary = 0.517
Dh = 0.0186
Dh_secondary = 0.014
length = 3.71

171

n_elems = 4
initial_V_secondary = -2

HTC_geometry_type = Pipe # pipe model
HTC_geometry_type_secondary = Pipe
HT_surface_area_density = 729
HT_surface_area_density_secondary = 1080.1

Twall_init = 628.15
wall_thickness = 0.0033

dim_wall = 1
material_wall = ss-mat
n_wall_elems = 1

[../]

[./ pump_pipe]
type = PBOneDFluidComponent
eos = eos
position = '0 -1.5 3.61'
orientation = '0 0 -1'

A = 0.132
Dh = 0.34
length = 4.38
n_elems = 4
f = 0.001
Hw = 0

[../]

[./ pump_discharge]
type = PBOneDFluidComponent
eos = eos
position = '0 -1.5 -0.77'
orientation = '0 1 0'

A = 5.36
Dh = 1
length = 1.26
n_elems = 2
f = 0.001
Hw = 0

[../]

[./ inlet_plenum]
type = PBVolumeBranch
center = '0 0 -0.77'
inputs = 'pump_discharge(out)'
outputs = 'CH1_LP(in) CH2_LP(in) CH3_LP(in) CH4_LP(in) CH5_LP(in)'
K = '0.2 0.5 5.2 6.0 13.8 12480'
Area = 0.44934
volume = 3.06

initial_P = 3e5
initial_T = 628.15
eos = eos
display_pps = true
nodal_Tbc = true

[../]

[./ hot_pool]
type = PBLiquidVolume
center = '0 0 6.45'

172

inputs = 'CH1_UP(out) CH2_UP(out) CH3_UP(out) CH4_UP(out) CH5_UP(out)'
outputs = 'IHX(primary_in)'
K = '0.5 0.5 0.5 0.5 0.5 5.0'
Area = 11.16
volume = 92.51

initial_level = 2.16 #3.59
initial_T = 783.15
initial_V = 0.00356
display_pps = true
eos = eos
covergas_component = 'cover_gas '

[../]

[./ cold_pool]
type = PBLiquidVolume
center = '0 0 2.3'
inputs = 'IHX(primary_out) DHX(primary_out)'
outputs = 'pump_pipe(in) DHX(primary_in)'

K = '0.1 0.1 0.2 0.1 '
Area = 23.96
volume = 152.97

initial_level = 5
initial_T = 628.15
initial_P = 3e5
display_pps = true
eos = eos
covergas_component = 'cover_gas '

[../]
[./ cover_gas]

type = CoverGas
n_liquidvolume =2
name_of_liquidvolume = 'hot_pool cold_pool '
initial_P = 1e5
initial_Vol = 66.77
initial_T = 783.15

[../]
[./ Pump_p]

type = PBPump
eos = eos
inputs = 'pump_pipe(out)'
outputs = 'pump_discharge(in)'

K = '1. 1.'
Area = 0.055
initial_P = 3e5

Head = 415100
Head_fn = pump_p_coastdown

[../]

Secondary Loop
[./ pipe8]

type = PBOneDFluidComponent
eos = eos
position = '0 2.7 2.17'
orientation = '0 -1 0'

A = 0.092
Dh = 0.34
length = 1
n_elems = 2

173

f = 0.001
Hw = 0

[../]

[./ pipe9]
type = PBOneDFluidComponent
eos = eos
position = '0 1.7 5.88'
orientation = '0 1 0'

A = 0.092
Dh = 0.34
length = 1
n_elems = 2
f = 0.001
Hw = 0

[../]

[./ NaHX]
type = PBHeatExchanger
eos = eos
eos_secondary = eos
position = '0 2.7 5.88'
orientation = '0 0 -1'
A = 0.766
A_secondary = 0.517
Dh = 0.0186
Dh_secondary = 0.014
length = 3.71
n_elems = 4
initial_V_secondary = -2.8

HTC_geometry_type = Pipe # pipe model
HTC_geometry_type_secondary = Pipe
HT_surface_area_density = 729
HT_surface_area_density_secondary = 1080.1

Twall_init = 628.15
wall_thickness = 0.0008 #0.00174 , 0.00087

dim_wall = 1
material_wall = ss-mat
n_wall_elems = 1

[../]

[./ Branch8]
type = PBBranch
inputs = 'pipe8(out)'
outputs = 'IHX(secondary_in)'
K = '0.05 0.05'
Area = 0.092
initial_P = 2e5
eos = eos

[../]

[./ Branch9]
type = PBBranch
inputs = 'IHX(secondary_out)'
outputs = 'pipe9(in)'
K = '0.0 0.0'
Area = 0.092
initial_P = 2e5
eos = eos

[../]

174

[./ Branch10]
type = PBBranch
inputs = 'pipe9(out) '
outputs = 'NaHX(primary_in)'
K = '0.01 0.01 '
Area = 0.092
initial_P = 2e5
eos = eos

[../]

[./ Pump_s]
type = PBPump
eos = eos
inputs = 'NaHX(primary_out)'
outputs = 'pipe8(in)'

K = '0.1 0.1'
Area = 0.766

initial_P = 2e5

Head = 40300
Head_fn = pump_s_coastdown

[../]

[./ secondary_p]
type = ReferenceBoundary
input = 'NaHX(primary_in)'
variable = 'pressure '
value = 1e5

[../]

Power conversion loop

[./ NaLoop_in]
type = PBTDJ
input = 'NaHX(secondary_in)'
v_fn = flow_secondary
T_bc = 596.75
eos = eos
weak_bc = true

[../]

[./ NaLoop_out]
type = PressureOutlet
input = 'NaHX(secondary_out)'
p_bc = '1e5'
eos = eos

[../]

DRACS loop
[./ DHX]

type = PBHeatExchanger
eos = eos
eos_secondary = eos
position = '0 -1.5 6.04'
orientation = '0 0 -1'
A = 0.024
A_secondary = 0.024
Dh = 0.037
Dh_secondary = 0.037
length = 2.35
n_elems = 4

175

HTC_geometry_type = Pipe # pipe model
HTC_geometry_type_secondary = Pipe
HT_surface_area_density = 108.1
HT_surface_area_density_secondary = 108.1

Twall_init = 628.15
dim_wall = 1
wall_thickness = 0.0045
material_wall = ss-mat

n_wall_elems = 1
[../]

[./ DRACS_inlet]
type = PBTDJ
input = 'DHX(secondary_in)'
v_fn = flow_dhx
T_bc = 450.3
eos = eos
wall_bc = true

[../]
[./ DRACS_outlet]

type = PressureOutlet
input = 'DHX(secondary_out)'
p_bc = 1.3e5
eos = eos

[../]
[]

[Postprocessors]
[./ pump_flow]

type = ComponentBoundaryFlow
input = pump_pipe(in)

[../]
[./ IHX_primaryflow]

type = ComponentBoundaryFlow
input = IHX(primary_in)

[../]
[./ IHX_secondaryflow]

type = ComponentBoundaryFlow
input = IHX(secondary_in)

[../]
[./ DHX_flow]

type = ComponentBoundaryFlow
input = DHX(primary_in)

[../]
[./ IHX_inlet_T]

type = ComponentBoundaryVariableValue
input = IHX(primary_in)
variable = temperature

[../]
[./ CH1_velocity]

type = ComponentBoundaryVariableValue
input = CH1(in)
variable = velocity

[../]
[./ CH2_velocity]

type = ComponentBoundaryVariableValue
input = CH2(in)
variable = velocity

[../]
[./ CH3_velocity]

type = ComponentBoundaryVariableValue

176

input = CH3(in)
variable = velocity

[../]
[./ CH4_velocity]

type = ComponentBoundaryVariableValue
input = CH4(in)
variable = velocity

[../]
[./ CH5_velocity]

type = ComponentBoundaryVariableValue
input = CH5(in)
variable = velocity

[../]
[./ CH1_outlet_flow]

type = ComponentBoundaryFlow
input = CH1_UP(out)

[../]
[./ CH2_outlet_flow]

type = ComponentBoundaryFlow
input = CH2_UP(out)

[../]
[./ CH3_outlet_flow]

type = ComponentBoundaryFlow
input = CH3_UP(out)

[../]
[./ CH4_outlet_flow]

type = ComponentBoundaryFlow
input = CH4_UP(out)

[../]
[./ CH5_outlet_flow]

type = ComponentBoundaryFlow
input = CH5_UP(out)

[../]
[./ CH1_outlet_T]

type = ComponentBoundaryVariableValue
input = CH1_UP(out)
variable = temperature

[../]
[./ CH2_outlet_T]

type = ComponentBoundaryVariableValue
input = CH2_UP(out)
variable = temperature

[../]
[./ CH3_outlet_T]

type = ComponentBoundaryVariableValue
input = CH3_UP(out)
variable = temperature

[../]
[./ CH4_outlet_T]

type = ComponentBoundaryVariableValue
input = CH4_UP(out)
variable = temperature

[../]
[./ CH5_outlet_T]

type = ComponentBoundaryVariableValue
input = CH5_UP(out)
variable = temperature

[../]
[./ max_Tcoolant_core]

type = NodalMaxValue
block = 'CH1:pipe CH2:pipe CH3:pipe CH4:pipe'
variable = temperature

[../]
[./ max_Tco_core]

177

type = NodalMaxValue
block = 'CH1:pipe CH2:pipe CH3:pipe CH4:pipe'
variable = Tw

[../]
[./ max_Tci_core]

type = NodalMaxValue
block = 'CH1:solid:clad CH2:solid:clad CH3:solid:clad CH4:solid:clad'
variable = T_solid

[../]
[./ max_Tf_core]

type = NodalMaxValue
block = 'CH1:solid:fuel CH2:solid:fuel CH3:solid:fuel CH4:solid:fuel'
variable = T_solid

[../]
[./ max_Tcoolant_Ref]

type = NodalMaxValue
block = 'CH5:pipe'
variable = temperature

[../]
[./ max_Tco_Ref]

type = NodalMaxValue
block = 'CH5:pipe'
variable = Tw

[../]
[./ max_Tci_Ref]

type = NodalMaxValue
block = 'CH5:solid:clad'
variable = T_solid

[../]
[./ max_Tf_Ref]

type = NodalMaxValue
block = 'CH5:solid:fuel'
variable = T_solid

[../]

[./ DHX_heatremoval]
type = HeatExchangerHeatRemovalRate
block = 'DHX:primary_pipe '
heated_perimeter = 2.5944

[../]
[./ IHX_heatremoval]

type = HeatExchangerHeatRemovalRate
block = 'IHX:primary_pipe '
heated_perimeter = 558.414

[../]
[./ NaHX_heatremoval]

type = HeatExchangerHeatRemovalRate
block = 'NaHX:secondary_pipe '
heated_perimeter = 558.414

[../]
[]

[Preconditioning]
active = 'SMP_PJFNK '

[./ SMP_PJFNK]
type = SMP
full = true
solve_type = 'PJFNK '
petsc_options_iname = '-pc_type '
petsc_options_value = 'lu'

[../]
[] # End preconditioning block

[Executioner]

178

type = Transient
dt = 0.1
dtmin = 1e-3

setting time step range
[./ TimeStepper]

type = FunctionDT
time_t = ' -1000 -499.9 -499.8 -499 -498 -450 -449 -1 0 2 3

10 11 380 381 440 441 1e5'
time_dt =' 0.02 0.02 0.2 0.2 0.5 0.5 2 2 0.2 0.2 0.5

0.5 2 2 2 2 2 2'
min_dt = 1e-3

[../]

nl_rel_tol = 1e-7
nl_abs_tol = 1e-6
nl_max_its = 10

l_tol = 1e-4
l_max_its = 100
line_search = basic

start_time = -500
num_steps = 10000
end_time = 0

[./ Quadrature]
type = SIMPSON
order = SECOND

[../]
[] # close Executioner section

[Outputs]
print_linear_residuals = false
[./ out_displaced]

type = Exodus
use_displaced = true
execute_on = 'initial timestep_end '
sequence = false

[../]
[./ checkpoint]

type = Checkpoint
num_files = 1

[../]
[./ console]

type = Console
perf_log = true

[../]
[./ csv]

type = CSV
[]

[]

5.8 Uncertainty Quantification using Dakota

An example problem demonstrating a coupling framework with Dakota for performing uncer-
tainty quantification study is included here. This example covers two modes of execution (on a
single ’local’ node or on multiple nodes) and is based on the Single Channel Flow problem covered
in section 5.2. For more information regarding this example, please refer to chapter 6.

179

6 Uncertainty Quantification

This section demonstrates an integration between SAM and the Dakota statistical analysis toolkit
developed by Sandia National Laboratory [19]. The integration of the two codes is achieved through
a Python coupling framework in order to leverage the sensitivity analysis, uncertainty quantifica-
tion, and many other statistical tools available through Dakota. The coupling framework is provided
through two examples that are available in the Examples directory of the SAM package.

6.1 Acquiring and Installing Dakota

Dakota is publicly available at no cost and is distributed by Sandia National Laboratory. Dakota
is supported on most operating systems, including Unix, Linux, and Windows. Users should down-
load the binary executable for preferred platform or compile Dakota from source code where needed.
Please refer to the Dakota website for installation instructions: https://dakota.sandia.gov/
quickstart.html

6.2 Dakota and SAM Coupling

At the base level, Dakota interfaces with the code in a black-box fashion, using system calls to
initiate simulations with SAM. Data communication between Dakota and the external code occurs
through parameter and response files. The coupling searches a SAM template input file and replaces
the uncertain parameters with the random values generated by Dakota. Once all SAM inputs are
generated, execution can be handled either on a serial node (with one or more cores on a single
machine) through Dakota’s built-in management schemes, or they can be handled on multiple nodes
by batching and submission to a cluster queue to be handled by a scheduler on an HPC (see Section
6.3).

After the SAM simulations complete, the Python interface reads the output CSV file and searches
for the target responses. The coupling driver does not currently support Exodus file output, so it is
the user’s responsibility to ensure that response parameters (PostProcessors) are printed through
the MOOSE CSV output file options. The built-in filters can process the SAM simulation results
before sending to Dakota: max for the maximum value, min for the minimum value, begin for the
beginning value of the simulation, and end for the ending value of the simulation. Users can choose
the parameters or response variables on which these filters are applied. The responses of interest are
written in a result file and sent back to Dakota for statistics. This is summarized in Figure 6.1.

6.3 Multiple Node Execution (HPC cluster)

Although Dakota has built-in methods to utilize a multiple node setup (i.e. high-performance
cluster) for the execution step, Dakota is unable to exercise this option if the underlying coupled
code also utilizes MPI. As an alternative, a framework has been implemented to decouple the Dakota
pre-processing and post-processing steps from actual code execution, allowing for greater flexibility.
Overall, the procedure follows:

1. Pre-processing: Dakota parses the defined input parameters and generates requested coupled
code input files into separate work directories. A random number generator seed is used
to maintain consistency. Dakota also generates “dummy” results in order to close out the
pre-processing run.

180

https://dakota.sandia.gov/quickstart.html
https://dakota.sandia.gov/quickstart.html

Figure 6.1: Dakota-SAM Coupling Scheme

2. Execution: All code input files are staged for submission to an HPC cluster job queue. De-
pending on the simulation requirements, it is suggested to batch multiple jobs together onto
a computational node to maximize utilization of available resources. An example script is
provided in DakotaBatch.py.

3. Post-processing: After all executions are finished, the user executes a Dakota post-processing
step to pull the generated results and obtain the desired statistics and information. The random
number generator seed maintains consistency, as the input parameters are re-generated in this
step and are needed for statistical correlation.

6.4 File structure overview

This section will briefly outline the different files required for a statistical study performed using
this Dakota-SAM coupled framework. These files are included in the UQ examples included in the
SAM examples directory.

• DakotaCouplingLib.py

This file contains several Python classes that allows Dakota to interact with the SAM input files
and perform code execution. It also includes post-processing tools to interpret SAM output. This
file should not be modified and should be kept in an accessible location.

• Dakota Code Driver File

This file interfaces with DakotaCouplingLib.py to define the Dakota model information needed
for a particular study.

– DakotaCodeDriver.py

181

For a standard study performed on a single node, this driver file will handle pre-processing,
execution, and post-processing of results. This file requires paths to the code executable and
coupling library, as well as specifications of your output variables.

– DakotaPreDriver.py

For a study performed on multiple nodes, this driver file will only handle pre-processing of the
problem. This file requires the path to the coupling library and specification of the output.

– DakotaPostDriver.py

For a study performed on multiple nodes, this driver file will only handle post-processing. This
file requires the path to the coupling library and specification of the code and the output.

• dakota_sam.in

This is the Dakota input file that defines the statistical study being performed. Please refer to the
example in Section 6.6.1 or the Dakota user manual [19] for more detail.

• ex01.template

This is the SAM input file template where perturbed parameters are replaced with {wildcard}
placeholders corresponding to the Dakota input file. Note that the default file extension that the
coupling library searches for is *.template, other file extensions must be explicitly claimed in
the Dakota code driver file and the Dakota input file. {wildcard} placeholders can be specified as
follows:

– {parameter_name}: parameter value replacement

– {parameter_name | format}: parameter value replacement with formatting specification (e.g.
12.5E)

– {parameter_name * 0.02}: arithmetic operations can be performed on the sampled parameter
value

• DakotaBatch.py

This is a Python script that can be used in a multiple node execution job to group together pro-
cessed input files into “batched submissions” to maximize available computational resources.
This file requires specification of the number of processors per node (or input files to be batched
to each node), the name of the input file, and the command to execute SAM.

• pbs-uq.header under queuedir

This is a template PBS submission script header for the generated batched submission jobs written
by DakotaBatch.py. Modify or substitute this header as needed to suit each HPC’s requirements.

• run.sh

There are several shell scripts included to automate the Dakota job process, users are encouraged
to use or reference these scripts.

182

6.5 Example case: single node execution

Here we demonstrate UQ coupling with SAM using Latin hypercube sampling to sample input
parameters in a Single Channel Flow problem (see 5.2). This example covers the case of executing
your Dakota study on a single computational node. A standard 1-D fluid channel is given a de-
fined inlet temperature and fluid velocity and outlet pressure boundary condition. The peak outlet
temperature is taken as the response variable in this example. Sodium is the working fluid in this
model.

The variables perturbed in this example include coverage for geometry (typical parameters),
closure model parameters, and equation-of-state parameters. Table 6.1 indicates the variables per-
turbed along with their nominal value and uncertainty range.

Table 6.1: Nominal Values of Uncertain Parameters

Uncertain Parameters Nominal Uncertainty
Hydraulic Diameter 1.0 m 1% (uniform)
Pipe Flow Heat Transfer Coefficient 1.0 50% (normal)
Sodium Thermal Conductivity 1.0 15% (normal)

6.5.1 Dakota Input File

The Dakota input file (i.e. dakota_sam.in) defines the method, variables, interface, and re-
sponses of interest.

The sampling method is identified in the method section (keyword: random).

method ,
sampling

sample_type random
samples = 8
probability_levels = 0.05 0.95

Uncertain variables, probability distributions, and upper/lower bounds are specified in the vari-
able section.

variables ,
uniform_uncertain = 1

lower_bounds 0.99
upper_bounds 1.01
descriptors 'hyd_diam '

normal_uncertain = 2
means 1.0 1.0
std_deviations 0.5 0.15
descriptors 'system_htc ' 'Na_k'

The interface section defines the driver file name, the parameter file saving the random values,
SAM template input file, and the response file for SAM simulation results. Note that the code input
template format is specified in the copy_files parameter. The number of concurrent SAM simula-
tions is specified by the asynchronus_evaluation_concurrency parameter, typically limited by the
number of processors available to the local node. The parameters_file and results_file should

183

be specified as below, which correspond to the default filenames used by the Python coupling inter-
face. Any files that need to be copied to each work directory should be specified by the copy_files

parameter. Here, the SAM template file (with file extension *.template) is designated for copying.

interface ,
fork

asynchronous_evaluation_concurrency = 4
analysis_driver = 'DakotaCodeDriver.py'
parameters_file = 'params.in'
results_file = 'results.out'
work_directory directory_tag
copy_files = '*. template '
named 'workdir ' file_save directory_save
aprepro
deactivate active_set_vector

The total number of the responses is claimed as response_functions, and the target responses
along with the criteria are specified in the driver file (i.e. DakotaCodeDriver.py).

responses ,
response_functions = 2
descriptors 'outlet_temperature ' 'outlet_flow '
no_gradients
no_hessians

6.5.2 Dakota-SAM Coupling File

This example covers the case of Single Node Execution without multiple processors or parallel
instances of execution. In this scenario, the entire process is handled in one step by Dakota us-
ing the Python driver files. Dakota is initiated to drive the SAM simulations via a driver file (i.e.
DakotaCodeDriver.py). The commands below load the coupling libraries along with the SAM exe-
cutable files. Appropriate paths must be specified for the SAM executable (CodeExecutableDirectory)
and the DakotaCouplingLibrary.py file (CouplingLibraryDirectory), either with full paths or rela-
tive to the work directories.

Code = 'SAM'
CodeExecutableDirectory = '/path/to/sam/'
CouplingLibraryDirectory = '../../ '
sys.path.append(CouplingLibraryDirectory)
from DakotaCouplingLib import DakotaCouplingInterface
UQInterface = DakotaCouplingInterface ()

The specified output is also indicated here in the driver file.

TrackedCodeOutput = {'outlet_temperature ':['outlet_temp ','max']},
'outlet_flow ':['outlet_flow ','min']}

Note the format for each output response should be specified as:

{'dakota_response_name ':['code_output_variable_name ','statistic_method ']}

Lastly, the coupling library interface will search for the SAM input template which was copied
into each work directory by Dakota, as specified in the Dakota input file. The interface will identify
the template if named using the default file extension *.template. If the template file follows a
different naming convention, it can be explicitly claimed in the code driver using:

TemplateFilemame = 'ex01.template '

184

The interface searches the template for the wildcards specifying the input parameters, marked
by brackets. Please refer to section 6.4 for more information regarding the template file.

The coupled simulation parameters as specified are passed to the interface:

UQInterface.RunInterfaceFunctions(Code ,sys.argv[1], CodeExecutableDirectory ,
sys.argv[2], TrackedCodeOutput)

If the template filename is declared:
UQInterface.RunInterfaceFunctions(Code ,sys.argv[1], CodeExecutableDirectory ,

sys.argv[2], TrackedCodeOutput ,TemplateFilename)

Finally, the following command is executed to run Dakota, which can be found in the run_pre.sh

script that also prepends several commands to clean the directory of unnecessary files.

dakota -i dakota_sam.in -o dakota_sam.out

6.5.3 Dakota Output

Dakota output records every evaluation and is organized into three parts: problem informa-
tion, parameters and responses, and summary statistics and can be found in the Dakota output file
(dakota_sam.out). For the uncertainty quantification analysis, Dakota generates random values
based on user-specified ranges and distributions. Parameters and responses for each evaluation are
included in the output file as well as summarized in the Dakota_Coupling_Summary.csv file.

Means, standard deviations, and 95% confidence intervals are computed for each response. In
addition, Dakota calculates several statistics between uncertainties and responses of interest, such
as covariance, Pearson coefficient, simple, partial, and rank correlations. Please refer to the Dakota
User’s Manual [19] for more information on output and analysis options.

6.6 Example case: multiple node execution

Here we demonstrate UQ coupling with SAM using LHS to sample input parameters in a trivial
pipe flow case as previously defined (see 6.5). This example covers the case of parallel execution,
such as on a HPC cluster or multi-processor resource, demonstrating the workflow as described in
Section 6.3. The following will discuss the necessary modifications to the single node execution
example to split the process into pre-processing, execution, and post-processing steps.

6.6.1 Dakota Input File

The Dakota input file defines the method, variables, interface, and responses of interest. There
are two separate files for the pre-processing (i.e. dakota_sam_pre.in) and post-processing (i.e.
dakota_sam_post.in) steps. These files are almost identical, but use a matching random number
generator seed for consistent sampling of the input parameter space.

The sampling method is identified in the method section (keyword: random) with seed specified.

method ,
sampling

sample_type random
seed = 61820
samples = 16
probability_levels = 0.05 0.95

185

The interface section defines the driver file name which differ for the pre- and post-processing
step, specified by analysis_driver. For clarity, the example case includes two separate Dakota
input files for the pre- and post-processing steps, but in practice the only difference between the two
files is the specification of the analysis_driver parameter to the correct Python code driver file.

interface ,
fork

analysis_driver = 'DakotaPreDriver.py'
parameters_file = 'params.in'
results_file = 'results.out'
work_directory directory_tag
copy_files = '*. template '
named 'workdir ' file_save directory_save
aprepro
deactivate active_set_vector

6.6.2 Dakota-SAM Coupling File

For parallel execution on multiple processors, the workflow is divided into a pre- and post-
processing step so that the MPI processes do not conflict. There are two similar driver files that differ
on the final library command to interface the input specifications with the Dakota UQ interface.

The pre-processor driver in DakotaPreProcess.py passes the library command:

UQInterface.PreProcess(sys.argv[1],sys.argv[2], TrackedCodeOutput)

The pre-processor driver in DakotaPostProcess.py passes the library command:

UQInterface.PostProcess(Code ,sys.argv[1],sys.argv[2], TrackedCodeOutput)

To run the pre-processor, use the following command to run Dakota, or use the example run_pre.sh

batch file to clean the work directory and run Dakota.

dakota -i dakota_sam_pre.in -o dakota_sam_pre.out

After running the pre-processor, the work directories and sampled input files should have been
generated and made ready for parallel execution. For HPC clusters with a queue system, it is sug-
gested that input files be grouped (“batched”) together to match the number of input files to the num-
ber of processors per node. An example of such script for batching is provided in DakotaBatch.py,
which uses a template PBS header for job submissions. After execution, each directory should
contain its output files ready for post.

To run the post-processor, use the following command to run Dakota, or use the example
run_post.sh script. For large runs, Dakota can be executed in parallel using mpirun.

dakota -i dakota_sam_post.in -o dakota_sam_post.out

6.6.3 Dakota Output

The format of the Dakota output is the same regardless of execution method, please refer to
Section 6.5.3 or the Dakota User’s Manual [19] for more information.

186

ACKNOWLEDGMENTS

The SAM code development is funded by U.S. Department of Energy Office Nuclear Energy
Advanced Modeling and Simulation (NEAMS) program, with additional supports from multiple
sources including Argonne Laboratory Directed Research and Development (LDRD), DOE-NE In-
dustry Funding Opportunity Announcement (iFOA), Gateway for Accelerated Innovation in Nuclear
(GAIN), Technology Commercialization Fund (TCF), and the U.S. Nuclear Regulatory Commis-
sion.

REFERENCES

[1] R. Hu. SAM Theory Manual. Technical Report ANL/NE-17/4, Argonne National Laboratory,
2017.

[2] R. Hu. Three-dimensional flow model development for thermal mixing and stratification mod-
eling in reactor system transients analyses. Nuclear Engineering and Design, 345:209–215,
2019.

[3] G. Hu, G. Zhang, and R. Hu. Reactivity Feedback Modeling in SAM. Technical Report
ANL-NSE-19/1, Argonne National Laboratory, 2019.

[4] G. Hu, R. Hu, and L. Zou. Development of Heat Pipe Reactor Modeling in SAM. Technical
Report ANL-NSE-19/9, Argonne National Laboratory, 2019.

[5] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandié. MOOSE: A parallel compu-
tational framework for coupled systems of nonlinear equations. Nuclear Engineering and
Design, 239:1768–1778, 2009.

[6] B.S. Kirk, J.W. Peterson, R.H. Stogner, and F.C. Graham. libMesh: A C++ Library for Parallel
Adaptive Mesh Refinement/Coarsening Simulations. Engineering with Computers, 22:237–
254, 2006.

[7] PETSc. PETSc Web page., 2017. URL http://www.mcs.anl.gov/petsc.

[8] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov Methods: a Survey of Approaches
and Applications. Journal of Computational Physics, 193:357–397, 2004.

[9] R.A. Berry, J.W. Peterson, H. Zhang, R.C. Martineau, H. Zhao, L. Zou, D. Andrs, and
J. Hansel. RELAP-7 Theory Manual. Technical Report INL/EXT-14-31366/Revision 3, Idaho
National Laboratory, 2018.

[10] R. Hu, J.W. Thomas, E. Munkhzul, and T.H. Fanning. Coupled System and CFD Code Simu-
lation of Thermal Stratification in SFR Protected Loss-Of-Flow Transients. In Proceedings of
ICAPP 2014, 2014.

[11] T.H. Fanning and R. Hu. Coupling the System Analysis Module with SAS4A/SASSYS-1.
Technical Report ANL/NE-16/22, Argonne National Laboratory, 2016.

187

http://www.mcs.anl.gov/petsc

[12] R. Martineau, D. Andrs, J. Hansel, C. Permann, M. Bernard, R. Johns, R. Hu, J. Wolf,
H. Zhang, and R. Szilard. Extending the Capability of Nuclear Plant Systems Analysis with
Advanced Tightly-Coupled Nuclear Fuels Performance. In 2018 American Nuclear Society
Annual Meeting, 2018.

[13] HYPRE Web page. URL https://computation-rnd.llnl.gov/linear solvers/.

[14] MPICH2 Web page. URL http://www.mcs.anl.gov/mpich2.

[15] TBB Web page. URL https://www.threadingbuildingblocks.org/.

[16] The RELAP5-3D Code Development Team. RELAP5-3D Code Manual Volume IV: Models
and Correlations. Technical Report INL-EXT-98-00834, Revision 4, Idaho National Labora-
tory, 2014.

[17] U.S. NRC. TRACE 5.0 Assessment Manual-Appendix A: Fundamental Validation Cases.
Technical report, U. S. Nuclear Regulatory Commission, 2008.

[18] Y.I. Chang, P.J. Finck, and C. Grandy. Advanced Burner Test Reactor Preconceptual De-
sign Report. Technical Report ANL-ABR-1 (ANL-AFCI-173), Argonne National Laboratory,
2006.

[19] B.M. Adams, W.J. Bohnhoff, K.R. Dalbey, M.S. Ebeida, J.P. Eddy, M.S. Eldred, G. Geraci,
R.W. Hooper, P.D. Hough, K.T. Hu, J.D. Jakeman, M. Khalil, K.A. Maupin, J.A. Monschke,
E.M. Ridgway, A.A. Rushdi, J.A. Stephens, L.P. Swiler, D.M. Vigil, T.M. Wildey, and J.G.
Winokur. Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimiza-
tion, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11
User’s Manual. Technical Report SAND2014-4633, Sandia National Laboratory, 2019.

188

https://computation-rnd.llnl.gov/linear_solvers/
http://www.mcs.anl.gov/mpich2
https://www.threadingbuildingblocks.org/

Nuclear Science & Engineering Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 208
Argonne, IL 60439

www.anl.gov

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

	ABSTRACT
	Contents
	List of Figures
	List of Tables
	SAM Overview
	Ultimate Goals and Objectives
	Software Structure
	Governing Theory
	Fluid dynamics
	Heat transfer
	Closure models
	Mass transport model development
	Reactor kinetics model development
	Numerical method

	Overview of Current Capabilities

	Running SAM
	Pre-requisite
	Obtaining the Code
	Compiling the Code from Source
	Executing
	Outputs

	SAM Components
	Input File Syntax
	Global Parameters
	Equation of State (EOS)
	PTEquationOfState
	Built-in EOS
	Simple Linearized EOS
	PTFunctionsEOS
	TabulatedEquationOfState
	PTFluidPropertiesEOS

	Components
	PBOneDFluidComponent
	HeatStructure
	PBPipe
	PBCoreChannel
	PBDuctedCoreChannel
	PBBypassChannel
	PBMoltenSaltChannel
	FuelAssembly
	DuctedFuelAssembly
	MultiChannelRodBundle
	HexLatticeCore
	PBCoupledHeatStructure
	HeatStructureWithExternalFlow
	HeatTransferWithExternalHeatStructure
	PBHeatExchanger
	PBTDJ
	PBTDV
	PressureOutlet
	CoupledTDV
	CoupledPPSTDJ
	CoupledPPSTDV
	PBSingleJunction
	PBBranch
	PBVolumeBranch
	Valve
	PBLiquidVolume
	CoverGas
	PBPump
	StagnantVolume
	LiquidTank
	ReactorCore
	SurfaceCoupling
	ReactorPower
	PointKinetics
	ReferenceBoundary
	PipeChain
	ChannelCoupling
	HeatPipe
	MultiComponentArray

	Control System Components
	CTGeneric
	ControlSystem
	TripSystem
	CSAddition
	CSDivision
	CSMultiplication
	CSExponentiation
	CSSTDFunction
	CSDelay
	CSUnitTrip
	CSDifferentiation
	CSIntegration
	CSProportionIntegration
	CSLeadLag
	TSCompare
	TSBoolean
	TSDelay
	Input syntax

	ComponentInputParameters
	PostProcessors
	ComponentBoundaryEnergyBalance
	ComponentBoundaryFlow
	ComponentBoundaryScalarFlow
	ComponentBoundaryVariableValue
	ComponentNodalVariableValue
	ConductionHeatRemovalRate
	HeatExchangerHeatRemovalRate

	TimeSteppers
	CourantNumberTimeStepper

	Preconditioning
	Executioner
	Outputs

	Example Problems
	Heat Conduction Problem
	Single Channel Flow
	Core Channel
	Heat Exchanger
	Volume Branch
	A Simple Loop Model
	A Simplified SFR Model
	Uncertainty Quantification using Dakota

	Uncertainty Quantification
	Acquiring and Installing Dakota
	Dakota and SAM Coupling
	Multiple Node Execution (HPC cluster)
	File structure overview
	Example case: single node execution
	Dakota Input File
	Dakota-SAM Coupling File
	Dakota Output

	Example case: multiple node execution
	Dakota Input File
	Dakota-SAM Coupling File
	Dakota Output

	ACKNOWLEDGMENTS
	REFERENCES

